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The Nelson—Aalen estimator

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

* Let N = {N(t);t € [0, 7]} be a counting process
— multiplicative intensity model: A(t) = «a(t)Y(t)
— Y(t) is predictable process
— want an estimator for A(t) = [ o(s)ds

Doob—Meyer decomposition:
X(t) = X*(t) + M(t)

For counting processes:
N(t) = fot A(s)ds + M(t)
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* Next: Find (an estimator for) the variance of A(t) — A*(t)
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* So we get
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Summary

* We have derived

— the Nelson—Aalen estimator for A(t)
— an estimator for the variance of the Nelson—Aalen estimator

* To do this we have used

— the Doob—Meyer decomposition (for a counting process)
— stochastic integrals (and properties of these)

— properties of martingales

— properties of an optional variation process
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* To do this we have used
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* Remaining questions:

— what is the distribution of A(t) — A*(t) (asymptotically)?
— what do we do if we observe several events at exactly the same time?



