TMA4275 Lifetime analysis

Håkon Tjelmeland
Department of Mathematical Sciences
Norwegian University of Science and Technology

The Nelson-Aalen estimator

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

* Let $N=\{N(t) ; t \in[0, \tau]\}$ be a counting process
- multiplicative intensity model: $\lambda(t)=\alpha(t) Y(t)$
- $Y(t)$ is predictable process
- want an estimator for $A(t)=\int_{0}^{t} \alpha(s) d s$

Doob-Meyer decomposition:

$$
X(t)=X^{\star}(t)+M(t)
$$

For counting processes:

$$
N(t)=\int_{0}^{t} \lambda(s) d s+M(t)
$$

The Nelson-Aalen estimator

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

* Let $N=\{N(t) ; t \in[0, \tau]\}$ be a counting process
- multiplicative intensity model: $\lambda(t)=\alpha(t) Y(t)$
- $Y(t)$ is predictable process
- want an estimator for $A(t)=\int_{0}^{t} \alpha(s) d s$
* Using Doob-Meyer for a counting process

$$
\begin{aligned}
d N(t) & =\lambda(t) d t+d M(t) \\
& =\alpha(t) Y(t) d t+d M(t)
\end{aligned}
$$

Doob-Meyer decomposition:

$$
X(t)=X^{\star}(t)+M(t)
$$

For counting processes:

$$
N(t)=\int_{0}^{t} \lambda(s) d s+M(t)
$$

The Nelson-Aalen estimator

Doob-Meyer decomposition:

$$
X(t)=X^{\star}(t)+M(t)
$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

* Let $N=\{N(t) ; t \in[0, \tau]\}$ be a counting process
- multiplicative intensity model: $\lambda(t)=\alpha(t) Y(t)$
- $Y(t)$ is predictable process
- want an estimator for $A(t)=\int_{0}^{t} \alpha(s) d s$
* Using Doob-Meyer for a counting process

$$
\begin{aligned}
d N(t) & =\lambda(t) d t+d M(t) \\
& =\alpha(t) Y(t) d t+d M(t)
\end{aligned}
$$

For counting processes:

$$
N(t)=\int_{0}^{t} \lambda(s) d s+M(t)
$$

* Note: One may have $Y(t)=0$ so we cannot just divide by $Y(t)$

The Nelson-Aalen estimator

Doob-Meyer decomposition:

$$
X(t)=X^{\star}(t)+M(t)
$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

* Let $N=\{N(t) ; t \in[0, \tau]\}$ be a counting process
- multiplicative intensity model: $\lambda(t)=\alpha(t) Y(t)$
- $Y(t)$ is predictable process
- want an estimator for $A(t)=\int_{0}^{t} \alpha(s) d s$
* Using Doob-Meyer for a counting process

$$
\begin{aligned}
d N(t) & =\lambda(t) d t+d M(t) \\
& =\alpha(t) Y(t) d t+d M(t)
\end{aligned}
$$

For counting processes:

$$
N(t)=\int_{0}^{t} \lambda(s) d s+M(t)
$$

* Note: One may have $Y(t)=0$ so we cannot just divide by $Y(t)$
\star Define $J(t)=I(Y(t)>0)$:

$$
J(t) d N(t)=J(t) \alpha(t) Y(t) d t+J(t) d M(t)
$$

The Nelson-Aalen estimator

Doob-Meyer decomposition:

$$
X(t)=X^{\star}(t)+M(t)
$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)
For counting processes:

* Let $N=\{N(t) ; t \in[0, \tau]\}$ be a counting process
- multiplicative intensity model: $\lambda(t)=\alpha(t) Y(t)$
- $Y(t)$ is predictable process
- want an estimator for $A(t)=\int_{0}^{t} \alpha(s) d s$
* Using Doob-Meyer for a counting process

$$
\begin{aligned}
d N(t) & =\lambda(t) d t+d M(t) \\
& =\alpha(t) Y(t) d t+d M(t)
\end{aligned}
$$

$$
N(t)=\int_{0}^{t} \lambda(s) d s+M(t)
$$

* Note: One may have $Y(t)=0$ so we cannot just divide by $Y(t)$
* Define $J(t)=I(Y(t)>0)$:

$$
J(t) d N(t)=J(t) \alpha(t) Y(t) d t+J(t) d M(t)
$$

* Defining " $0=0$ " we can now divide by $Y(t)$:

$$
\frac{J(t)}{Y(t)} d N(t)=J(t) \alpha(t) d t+\frac{J(t)}{Y(t)} d M(t)
$$

The Nelson-Aalen estimator

Doob-Meyer decomposition:

$$
X(t)=X^{\star}(t)+M(t)
$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)
For counting processes:

* Let $N=\{N(t) ; t \in[0, \tau]\}$ be a counting process
- multiplicative intensity model: $\lambda(t)=\alpha(t) Y(t)$
- $Y(t)$ is predictable process
- want an estimator for $A(t)=\int_{0}^{t} \alpha(s) d s$
* Using Doob-Meyer for a counting process

$$
\begin{aligned}
d N(t) & =\lambda(t) d t+d M(t) \\
& =\alpha(t) Y(t) d t+d M(t)
\end{aligned}
$$

$$
N(t)=\int_{0}^{t} \lambda(s) d s+M(t)
$$

* Note: One may have $Y(t)=0$ so we cannot just divide by $Y(t)$
\star Define $J(t)=I(Y(t)>0)$:

$$
J(t) d N(t)=J(t) \alpha(t) Y(t) d t+J(t) d M(t)
$$

* Defining " $0=0$ " we can now divide by $Y(t)$:

$$
\begin{aligned}
\frac{J(t)}{Y(t)} d N(t) & =J(t) \alpha(t) d t+\frac{J(t)}{Y(t)} d M(t) \\
\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) & =\int_{0}^{t} J(s) \alpha(s) d s+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
\end{aligned}
$$

The Nelson-Aalen estimator

Doob-Meyer decomposition:

$$
X(t)=X^{\star}(t)+M(t)
$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)
For counting processes:
\star Let $N=\{N(t) ; t \in[0, \tau]\}$ be a counting process

- multiplicative intensity model: $\lambda(t)=\alpha(t) Y(t)$
- $Y(t)$ is predictable process
- want an estimator for $A(t)=\int_{0}^{t} \alpha(s) d s$
* Using Doob-Meyer for a counting process

$$
\begin{aligned}
d N(t) & =\lambda(t) d t+d M(t) \\
& =\alpha(t) Y(t) d t+d M(t)
\end{aligned}
$$

$$
N(t)=\int_{0}^{t} \lambda(s) d s+M(t)
$$

* Note: One may have $Y(t)=0$ so we cannot just divide by $Y(t)$
* Define $J(t)=I(Y(t)>0)$:

$$
J(t) d N(t)=J(t) \alpha(t) Y(t) d t+J(t) d M(t)
$$

* Defining " $0=0$ " we can now divide by $Y(t)$:

$$
\begin{aligned}
\frac{J(t)}{Y(t)} d N(t) & =J(t) \alpha(t) d t+\frac{J(t)}{Y(t)} d M(t) \\
\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) & =\int_{0}^{t} J(s) \alpha(s) d s+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
\end{aligned}
$$

* Define

$$
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \quad \text { and } \quad A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
$$

The Nelson-Aalen estimator

Doob-Meyer decomposition:

$$
X(t)=X^{\star}(t)+M(t)
$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

* Let $N=\{N(t) ; t \in[0, \tau]\}$ be a counting process
- multiplicative intensity model: $\lambda(t)=\alpha(t) Y(t)$
- $Y(t)$ is predictable process
- want an estimator for $A(t)=\int_{0}^{t} \alpha(s) d s$
* Using Doob-Meyer for a counting process

$$
\begin{aligned}
d N(t) & =\lambda(t) d t+d M(t) \\
& =\alpha(t) Y(t) d t+d M(t)
\end{aligned}
$$

For counting processes:

$$
N(t)=\int_{0}^{t} \lambda(s) d s+M(t)
$$

* Note: One may have $Y(t)=0$ so we cannot just divide by $Y(t)$
* Define $J(t)=I(Y(t)>0)$:

$$
J(t) d N(t)=J(t) \alpha(t) Y(t) d t+J(t) d M(t)
$$

* Defining " $0=0$ " we can now divide by $Y(t)$:

$$
\begin{aligned}
\frac{J(t)}{Y(t)} d N(t) & =J(t) \alpha(t) d t+\frac{J(t)}{Y(t)} d M(t) \\
\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) & =\int_{0}^{t} J(s) \alpha(s) d s+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
\end{aligned}
$$

* Define

$$
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \quad \text { and } \quad A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
$$

* Then we get

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

The Nelson-Aalen estimator (cont.)

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

The Nelson-Aalen estimator (cont.)

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* Note:
- $M(t)$ is a zero-mean martingale
- $Y(t)$ is assumed to be a predictable process
- $J(t)=I(Y(t)>0)$ is then also a predictable process

$-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
- So

$$
I(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

is a stochastic integral and thereby a zero-mean martingale

The Nelson-Aalen estimator (cont.)

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* Note:
- $M(t)$ is a zero-mean martingale
- $Y(t)$ is assumed to be a predictable process
- $J(t)=I(Y(t)>0)$ is then also a predictable process

$-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
- So

$$
I(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$
\mathrm{E}\left[\widehat{A}(t)-A^{\star}(t)\right]=0
$$

The Nelson-Aalen estimator (cont.)

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* Note:
- $M(t)$ is a zero-mean martingale
- $Y(t)$ is assumed to be a predictable process
- $J(t)=I(Y(t)>0)$ is then also a predictable process

$-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
- So

$$
I(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$
\mathrm{E}\left[\widehat{A}(t)-A^{\star}(t)\right]=0
$$

$\star \widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$

The Nelson-Aalen estimator (cont.)

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* Note:
- $M(t)$ is a zero-mean martingale
- $Y(t)$ is assumed to be a predictable process
- $J(t)=I(Y(t)>0)$ is then also a predictable process

- $\frac{J(t)}{Y(t)}$ is thereby also a predictable process
- So

$$
I(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$
\mathrm{E}\left[\widehat{A}(t)-A^{\star}(t)\right]=0
$$

$\star \widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
\star The Nelson-Aalen estimator is

$$
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s)
$$

The Nelson-Aalen estimator (cont.)

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* Note:
- $M(t)$ is a zero-mean martingale
- $Y(t)$ is assumed to be a predictable process
- J t) $=I(Y(t)>0)$ is then also a predictable process

- $\frac{J(t)}{Y(t)}$ is thereby also a predictable process

$$
I(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$
\mathrm{E}\left[\widehat{A}(t)-A^{\star}(t)\right]=0
$$

$\star \widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
\star The Nelson-Aalen estimator is

$$
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s)
$$

The Nelson-Aalen estimator (cont.)

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* Note:
- $M(t)$ is a zero-mean martingale
- $Y(t)$ is assumed to be a predictable process
- J t) $=I(Y(t)>0)$ is then also a predictable process

- $\frac{J(t)}{Y(t)}$ is thereby also a predictable process

$$
I(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$
\mathrm{E}\left[\widehat{A}(t)-A^{\star}(t)\right]=0
$$

$\star \widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
\star The Nelson-Aalen estimator is

$$
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s)=\sum_{j: T_{j}<t} \frac{1}{Y\left(T_{j}\right)}
$$

The Nelson-Aalen estimator (cont.)

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* Note:
- $M(t)$ is a zero-mean martingale
- $Y(t)$ is assumed to be a predictable process
- J t) $=I(Y(t)>0)$ is then also a predictable process
$-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
- So

$$
I(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$
E\left[\widehat{A}(t)-A^{\star}(t)\right]=0
$$

$\star \widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
\star The Nelson-Aalen estimator is

$$
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s)=\sum_{j: T_{j}<t} \frac{1}{Y\left(T_{j}\right)}
$$

The Nelson-Aalen estimator (cont.)

$$
\begin{array}{r}
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s) \\
A^{\star}(t)=\int_{0}^{t} J(s) \alpha(s) d s
\end{array}
$$

* Recall from previous page

$$
\widehat{A}(t)=A^{\star}(t)+\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* Note:
- $M(t)$ is a zero-mean martingale
- $Y(t)$ is assumed to be a predictable process
- $J(t)=I(Y(t)>0)$ is then also a predictable process
$-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
- So

$$
I(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$
E\left[\widehat{A}(t)-A^{\star}(t)\right]=0
$$

$\star \widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
\star The Nelson-Aalen estimator is

$$
\widehat{A}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d N(s)=\sum_{j: T_{j}<t} \frac{1}{Y\left(T_{j}\right)}
$$

\star Next: Find (an estimator for) the variance of $\widehat{A}(t)-A^{\star}(t)$

The variance of $\widehat{A}(t)-A^{\star}(t)$
\star Recall from previous page:

$$
\widehat{A}(t)-A^{\star}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

$\left[\int H d M\right](t)=\int_{0}^{t}(H(s))^{2} d N(s)$

$$
\operatorname{Var}[M(t)]=\mathrm{E}[[M](t)]
$$

The variance of $\widehat{A}(t)-A^{\star}(t)$

\star Recall from previous page:

$$
\widehat{A}(t)-A^{\star}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

$\left[\int H d M\right](t)=\int_{0}^{t}(H(s))^{2} d N(s)$

$$
\operatorname{Var}[M(t)]=\mathrm{E}[[M](t)]
$$

The variance of $\widehat{A}(t)-A^{\star}(t)$

\star Recall from previous page:

$$
\widehat{A}(t)-A^{\star}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

* This gives

$$
\left[\widehat{A}-A^{\star}\right](t)=\left[\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)\right]=\left[\int \frac{J}{Y} d M\right](t)
$$

$\left[\int H d M\right](t)=\int_{0}^{t}(H(s))^{2} d N(s)$

$$
\operatorname{Var}[M(t)]=\mathrm{E}[[M](t)]
$$

The variance of $\widehat{A}(t)-A^{\star}(t)$
\star Recall from previous page:

$$
\widehat{A}(t)-A^{\star}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

\star This gives

$$
\begin{aligned}
{\left[\widehat{A}-A^{\star}\right](t) } & =\left[\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)\right]=\left[\int \frac{J}{Y} d M\right](t) \\
& =\int_{0}^{t}\left(\frac{J(s)}{Y(s)}\right)^{2} d N(s)
\end{aligned}
$$

$\left[\int H d M\right](t)=\int_{0}^{t}(H(s))^{2} d N(s)$
$\operatorname{Var}[M(t)]=\mathrm{E}[[M](t)]$

The variance of $\widehat{A}(t)-A^{\star}(t)$
\star Recall from previous page:

$$
\widehat{A}(t)-A^{\star}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

\star This gives

$$
\begin{aligned}
{\left[\widehat{A}-A^{\star}\right](t) } & =\left[\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)\right]=\left[\int \frac{J}{Y} d M\right](t) \\
& =\int_{0}^{t}\left(\frac{J(s)}{Y(s)}\right)^{2} d N(s)=\sum_{j: T_{j}<t} \frac{1}{Y\left(T_{j}\right)^{2}}
\end{aligned}
$$

$\left[\int H d M\right](t)=\int_{0}^{t}(H(s))^{2} d N(s)$

$$
\operatorname{Var}[M(t)]=\mathrm{E}[[M](t)]
$$

The variance of $\widehat{A}(t)-A^{\star}(t)$
\star Recall from previous page:

$$
\widehat{A}(t)-A^{\star}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

$$
\begin{array}{r}
{\left[\int H d M\right](t)=\int_{0}^{t}(H(s))^{2} d N(s)} \\
\operatorname{Var}[M(t)]=\mathrm{E}[[M](t)]
\end{array}
$$

* This gives

$$
\begin{aligned}
{\left[\widehat{A}-A^{\star}\right](t) } & =\left[\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)\right]=\left[\int \frac{J}{Y} d M\right](t) \\
& =\int_{0}^{t}\left(\frac{J(s)}{Y(s)}\right)^{2} d N(s)=\sum_{j: T_{j}<t} \frac{1}{Y\left(T_{j}\right)^{2}}
\end{aligned}
$$

The variance of $\widehat{A}(t)-A^{\star}(t)$

* Recall from previous page:

$$
\widehat{A}(t)-A^{\star}(t)=\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)
$$

$$
\begin{array}{r}
{\left[\int H d M\right](t)=\int_{0}^{t}(H(s))^{2} d N(s)} \\
\operatorname{Var}[M(t)]=\mathrm{E}[[M](t)]
\end{array}
$$

* This gives

$$
\begin{aligned}
{\left[\widehat{A}-A^{\star}\right](t) } & =\left[\int_{0}^{t} \frac{J(s)}{Y(s)} d M(s)\right]=\left[\int \frac{J}{Y} d M\right](t) \\
& =\int_{0}^{t}\left(\frac{J(s)}{Y(s)}\right)^{2} d N(s)=\sum_{j: T_{j}<t} \frac{1}{Y\left(T_{j}\right)^{2}}
\end{aligned}
$$

* So we get

$$
\operatorname{Var}\left[\widehat{A}(t)-A^{\star}(t)\right]=\mathrm{E}\left[\left[\widehat{A}-A^{\star}\right](t)\right]=\mathrm{E}\left[\sum_{j: T_{j}<t} \frac{1}{Y\left(T_{j}\right)^{2}}\right]
$$

\star Thus: An unbiased estimator for $\operatorname{Var}\left[\widehat{A}(t)-A^{\star}(t)\right]$ is

$$
\widehat{\sigma}^{2}(t)=\sum_{j: T_{j}<t} \frac{1}{Y\left(T_{j}\right)^{2}}
$$

Summary

* We have derived
- the Nelson-Aalen estimator for $A(t)$
- an estimator for the variance of the Nelson-Aalen estimator
* To do this we have used
- the Doob-Meyer decomposition (for a counting process)
- stochastic integrals (and properties of these)
- properties of martingales
- properties of an optional variation process

Summary

* We have derived
- the Nelson-Aalen estimator for $A(t)$
- an estimator for the variance of the Nelson-Aalen estimator
* To do this we have used
- the Doob-Meyer decomposition (for a counting process)
- stochastic integrals (and properties of these)
- properties of martingales
- properties of an optional variation process
* Remaining questions:
- what is the distribution of $\widehat{A}(t)-A^{\star}(t)$ (asymptotically)?
- what do we do if we observe several events at exactly the same time?

