TMA4275 Lifetime analysis

Håkon Tjelmeland Department of Mathematical Sciences Norwegian University of Science and Technology

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

- \star Let $\mathit{N} = \{\mathit{N}(\mathit{t}); \mathit{t} \in [0, \tau]\}$ be a counting process
 - multiplicative intensity model: $\lambda(t) = \alpha(t)Y(t)$
 - -Y(t) is predictable process
 - want an estimator for $A(t) = \int_0^t \alpha(s) ds$

 ${\sf Doob-Meyer\ decomposition:}$

$$X(t) = X^*(t) + M(t)$$

$$N(t) = \int_{\mathbf{0}}^{t} \lambda(s) ds + M(t)$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

- * Let $N = \{N(t); t \in [0, \tau]\}$ be a counting process
 - multiplicative intensity model: $\lambda(t) = \alpha(t)Y(t)$
 - Y(t) is predictable process
 - want an estimator for $A(t) = \int_0^t \alpha(s) ds$
- ★ Using Doob-Meyer for a counting process

$$dN(t) = \lambda(t)dt + dM(t)$$

= $\alpha(t)Y(t)dt + dM(t)$

Doob-Meyer decomposition:

$$X(t) = X^*(t) + M(t)$$

$$N(t) = \int_0^t \lambda(s)ds + M(t)$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

- * Let $N = \{N(t); t \in [0, \tau]\}$ be a counting process
 - multiplicative intensity model: $\lambda(t) = \alpha(t)Y(t)$
 - -Y(t) is predictable process
 - want an estimator for $A(t) = \int_0^t \alpha(s) ds$
- * Using Doob–Meyer for a counting process

$$dN(t) = \lambda(t)dt + dM(t)$$

= $\alpha(t)Y(t)dt + dM(t)$

 \star Note: One may have Y(t)=0 so we cannot just divide by Y(t)

Doob–Meyer decomposition:

$$X(t) = X^{\star}(t) + M(t)$$

$$N(t) = \int_0^t \lambda(s) ds + M(t)$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

- * Let $N = \{N(t); t \in [0, \tau]\}$ be a counting process
 - multiplicative intensity model: $\lambda(t) = \alpha(t)Y(t)$
 - -Y(t) is predictable process
 - want an estimator for $A(t) = \int_0^t \alpha(s) ds$
- ★ Using Doob–Meyer for a counting process

$$dN(t) = \lambda(t)dt + dM(t)$$

= $\alpha(t)Y(t)dt + dM(t)$

- \star Note: One may have Y(t)=0 so we cannot just divide by Y(t)
- * Define J(t) = I(Y(t) > 0):

$$J(t)dN(t) = J(t)\alpha(t)Y(t)dt + J(t)dM(t)$$

Doob–Meyer decomposition:

$$X(t) = X^{\star}(t) + M(t)$$

$$N(t) = \int_0^t \lambda(s) ds + M(t)$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

- * Let $N = \{N(t); t \in [0, \tau]\}$ be a counting process
 - multiplicative intensity model: $\lambda(t) = \alpha(t)Y(t)$
 - Y(t) is predictable process
 - want an estimator for $A(t) = \int_0^t \alpha(s) ds$
- \star Using Doob–Meyer for a counting process

$$dN(t) = \lambda(t)dt + dM(t)$$

= $\alpha(t)Y(t)dt + dM(t)$

- \star Note: One may have Y(t)=0 so we cannot just divide by Y(t)
- * Define J(t) = I(Y(t) > 0):

$$J(t)dN(t) = J(t)\alpha(t)Y(t)dt + J(t)dM(t)$$

* Defining " $\frac{0}{0} = 0$ " we can now divide by Y(t):

$$\frac{J(t)}{Y(t)}dN(t) = J(t)\alpha(t)dt + \frac{J(t)}{Y(t)}dM(t)$$

Doob–Meyer decomposition:

$$X(t) = X^{\star}(t) + M(t)$$

$$N(t) = \int_0^t \lambda(s)ds + M(t)$$

$$N(t) = \int_0^t \lambda(s)ds + M(t)$$

(Reference: Section 3.1.5 in Aalen, Borgan and Giessing, 2008)

- * Let $N = \{N(t); t \in [0, \tau]\}$ be a counting process
 - multiplicative intensity model: $\lambda(t) = \alpha(t)Y(t)$
 - Y(t) is predictable process
 - want an estimator for $A(t) = \int_0^t \alpha(s) ds$
- ★ Using Doob-Meyer for a counting process

$$dN(t) = \lambda(t)dt + dM(t)$$

= \alpha(t)Y(t)dt + dM(t)

- * Note: One may have Y(t) = 0 so we cannot just divide by Y(t)
- * Define J(t) = I(Y(t) > 0):

$$J(t)dN(t) = J(t)\alpha(t)Y(t)dt + J(t)dM(t)$$

* Defining " $\frac{0}{0} = 0$ " we can now divide by Y(t):

$$\frac{J(t)}{Y(t)}dN(t) = J(t)\alpha(t)dt + \frac{J(t)}{Y(t)}dM(t)$$
$$\int_{0}^{t} \frac{J(s)}{Y(s)}dN(s) = \int_{0}^{t} J(s)\alpha(s)ds + \int_{0}^{t} \frac{J(s)}{Y(s)}dM(s)$$

$$N(t) = \int_0^t \lambda(s) ds + M(t)$$

(Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)

- \star Let $N = \{N(t); t \in [0, \tau]\}$ be a counting process
 - multiplicative intensity model: $\lambda(t) = \alpha(t)Y(t)$
 - -Y(t) is predictable process
 - want an estimator for $A(t) = \int_0^t \alpha(s) ds$
- ★ Using Doob-Meyer for a counting process

$$dN(t) = \lambda(t)dt + dM(t)$$

= \alpha(t)Y(t)dt + dM(t)

- \star Note: One may have Y(t)=0 so we cannot just divide by Y(t)
- * Define J(t) = I(Y(t) > 0):

$$J(t)dN(t) = J(t)\alpha(t)Y(t)dt + J(t)dM(t)$$

* Defining " $\frac{0}{0} = 0$ " we can now divide by Y(t):

$$\frac{J(t)}{Y(t)}dN(t) = J(t)\alpha(t)dt + \frac{J(t)}{Y(t)}dM(t)$$
$$\int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)}dN(s) = \int_{\mathbf{0}}^{t} J(s)\alpha(s)ds + \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)}dM(s)$$

* Define

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s)$$
 and $A^*(t) = \int_0^t J(s)\alpha(s) ds$

 $X(t) = X^{\star}(t) + M(t)$

For counting processes:

$$N(t) = \int_0^t \lambda(s)ds + M(t)$$

- (Reference: Section 3.1.5 in Aalen, Borgan and Gjessing, 2008)
 - ★ Let $N = \{N(t); t \in [0, \tau]\}$ be a counting process
 - multiplicative intensity model: $\lambda(t) = \alpha(t)Y(t)$
 - -Y(t) is predictable process
 - want an estimator for $A(t) = \int_0^t \alpha(s) ds$
 - ★ Using Doob-Meyer for a counting process

$$dN(t) = \lambda(t)dt + dM(t)$$

= \alpha(t)Y(t)dt + dM(t)

- \star Note: One may have Y(t)=0 so we cannot just divide by Y(t)
- * Define J(t) = I(Y(t) > 0): $J(t)dN(t) = J(t)\alpha(t)Y(t)dt + J(t)dM(t)$
- * Defining " $\frac{0}{0} = 0$ " we can now divide by Y(t):

$$\frac{J(t)}{Y(t)}dN(t) = J(t)\alpha(t)dt + \frac{J(t)}{Y(t)}dM(t)$$

$$\int_{0}^{t} \frac{J(s)}{Y(s)}dN(s) = \int_{0}^{t} J(s)\alpha(s)ds + \int_{0}^{t} \frac{J(s)}{Y(s)}dM(s)$$

* Define

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s)$$
 and $A^*(t) = \int_0^t J(s)\alpha(s) ds$

* Then we get

$$\widehat{A}(t) = A^{\star}(t) + \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

* Recall from previous page

$$\widehat{A}(t) = A^*(t) + \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

$$A^{*}(t) = \int_{\mathbf{0}}^{t} J(s)\alpha(s)ds$$

* Recall from previous page

$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$
$$A^{*}(t) = \int_{\mathbf{0}}^{t} J(s)\alpha(s) ds$$

$$\widehat{A}(t) = A^{\star}(t) + \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

⋆ Note:

- -M(t) is a zero-mean martingale
- -Y(t) is assumed to be a predictable process
- -J(t)=I(Y(t)>0) is then also a predictable process
- $-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
- S

$$I(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

is a stochastic integral and thereby a zero-mean martingale

* Recall from previous page

$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

$$A^{*}(t) = \int_{\mathbf{0}}^{t} J(s)\alpha(s) ds$$

$$\widehat{A}(t) = A^{\star}(t) + \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

- ⋆ Note:
 - M(t) is a zero-mean martingale
 - -Y(t) is assumed to be a predictable process
 - -J(t)=I(Y(t)>0) is then also a predictable process
 - $-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
 - S

$$I(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$\mathsf{E}\Big[\widehat{A}(t)-A^{\star}(t)\Big]=0$$

* Recall from previous page

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s)$$

$$A^*(t) = \int_0^t J(s)\alpha(s) ds$$

 $\widehat{A}(t) = A^*(t) + \int_{-\infty}^{t} \frac{J(s)}{V(s)} dM(s)$

* Note:

- M(t) is a zero-mean martingale
- -Y(t) is assumed to be a predictable process
- -J(t)=I(Y(t)>0) is then also a predictable process
- $-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
- S

$$I(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$\mathsf{E}\Big[\widehat{A}(t)-A^{\star}(t)\Big]=0$$

 \star $\widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$

* Recall from previous page

$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$
$$A^{*}(t) = \int_{\mathbf{0}}^{t} J(s)\alpha(s) ds$$

$$\widehat{A}(t) = A^*(t) + \int_{-\infty}^{t} \frac{J(s)}{V(s)} dM(s)$$

- ⋆ Note:
 - -M(t) is a zero-mean martingale
 - -Y(t) is assumed to be a predictable process
 - -J(t)=I(Y(t)>0) is then also a predictable process
 - $-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
 - 50

$$I(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

is a stochastic integral and thereby a zero-mean martingale

★ Thereby we have that

$$\mathsf{E}\Big[\widehat{A}(t)-A^{\star}(t)\Big]=0$$

- \star $\widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
- * The Nelson-Aalen estimator is

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s)$$

* Recall from previous page

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s)$$

$$A^*(t) = \int_0^t J(s)\alpha(s) ds$$

$$\widehat{A}(t) = A^*(t) + \int_{-\infty}^{t} \frac{J(s)}{V(s)} dM(s)$$

- * Note:
 - -M(t) is a zero-mean martingale
 - Y(t) is assumed to be a predictable process
 - -J(t) = I(Y(t) > 0) is then also a predictable process
 - $-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
 - 50

$$I(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

is a stochastic integral and thereby a zero-mean martingale

★ Thereby we have that

$$\mathsf{E}\Big[\widehat{A}(t)-A^{\star}(t)\Big]=0$$

- $\star \widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
- * The Nelson-Aalen estimator is

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s)$$

* Recall from previous page

$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$
$$A^{*}(t) = \int_{\mathbf{0}}^{t} J(s)\alpha(s) ds$$

$$\widehat{A}(t) = A^{\star}(t) + \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

- * Note:
 - -M(t) is a zero-mean martingale
 - $-\ Y(t)$ is assumed to be a predictable process
 - J(t) = I(Y(t) > 0) is then also a predictable process
 - $-\frac{J(t)}{Y(t)}$ is thereby also a predictable process
 - S

$$I(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

is a stochastic integral and thereby a zero-mean martingale

* Thereby we have that

$$\mathsf{E}\Big[\widehat{A}(t)-A^{\star}(t)\Big]=0$$

- $\star \widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
- * The Nelson-Aalen estimator is

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s) = \sum_{j: T_j < t} \frac{1}{Y(T_j)}$$

* Recall from previous page

$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$
$$A^{*}(t) = \int_{\mathbf{0}}^{t} J(s)\alpha(s) ds$$

$$\widehat{A}(t) = A^{\star}(t) + \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

- * Note:
 - M(t) is a zero-mean martingale
 - Y(t) is assumed to be a predictable process J(t) = I(Y(t) > 0) is then also a predictable process
 - $-\frac{J(t)}{Y(t)}$ is thereby also a predictable process

$$I(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

is a stochastic integral and thereby a zero-mean martingale

$$\mathsf{E}\Big[\widehat{A}(t)-A^{\star}(t)\Big]=0$$

- \star $\widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
- * The Nelson-Aalen estimator is

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s) = \sum_{j:T_j < t} \frac{1}{Y(T_j)}$$

* Recall from previous page

$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$
$$A^{*}(t) = \int_{\mathbf{0}}^{t} J(s)\alpha(s) ds$$

$$\widehat{A}(t) = A^{\star}(t) + \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

- * Note:
 - M(t) is a zero-mean martingale

 - Y(t) is assumed to be a predictable process J(t) = I(Y(t) > 0) is then also a predictable process
 - $-\frac{J(t)}{Y(t)}$ is thereby also a predictable process

$$I(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

is a stochastic integral and thereby a zero-mean martingale

T3 TA

 T_1

* Thereby we have that

$$\mathsf{E} \Big[\widehat{A}(t) - A^\star(t) \Big] = 0$$

- \star $\widehat{A}(t)$ is (essentially) an unbiased estimator of $A^{\star}(t)$
- * The Nelson-Aalen estimator is

$$\widehat{A}(t) = \int_0^t \frac{J(s)}{Y(s)} dN(s) = \sum_{j:T_j < t} \frac{1}{Y(T_j)}$$

* Next: Find (an estimator for) the variance of $\widehat{A}(t) - A^*(t)$

* Recall from previous page:

$$\widehat{A}(t) - A^*(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

* Recall from previous page:

$$\widehat{A}(t) - A^{\star}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dM(s)$$

* This gives

$$\left[\widehat{A} - A^{*}\right](t) = \left[\int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)\right]$$

* Recall from previous page:

$$\widehat{A}(t) - A^{\star}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dM(s)$$

* This gives

$$\left[\widehat{A} - A^{\star}\right](t) = \left[\int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dM(s)\right] = \left[\int \frac{J}{Y} dM\right](t)$$

 $[\int HdM](t) = \int_0^t (H(s))^2 dN(s)$

Var[M(t)] = E[[M](t)]

* Recall from previous page:

$$\widehat{A}(t) - A^{\star}(t) = \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

* This gives

$$\left[\widehat{A} - A^{\star}\right](t) = \left[\int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dM(s)\right] = \left[\int_{\mathbf{0}}^{t} \frac{J}{Y} dM\right](t)$$
$$= \int_{\mathbf{0}}^{t} \left(\frac{J(s)}{Y(s)}\right)^{2} dN(s)$$

* Recall from previous page:

$$\widehat{A}(t) - A^{\star}(t) = \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

* This gives

$$\left[\widehat{A} - A^{\star}\right](t) = \left[\int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)\right] = \left[\int \frac{J}{Y} dM\right](t)$$
$$= \int_{0}^{t} \left(\frac{J(s)}{Y(s)}\right)^{2} dN(s) = \sum_{j:T_{j} < t} \frac{1}{Y(T_{j})^{2}}$$

* Recall from previous page:

$$\widehat{A}(t) - A^{\star}(t) = \int_0^t \frac{J(s)}{Y(s)} dM(s)$$

* This gives

$$\begin{aligned} \left[\widehat{A} - A^*\right](t) &= \left[\int_0^t \frac{J(s)}{Y(s)} dM(s)\right] = \left[\int \frac{J}{Y} dM\right](t) \\ &= \int_0^t \left(\frac{J(s)}{Y(s)}\right)^2 dN(s) = \sum_{j: T_i < t} \frac{1}{Y(T_j)^2} \end{aligned}$$

★ So we get

$$\operatorname{Var}\left[\widehat{A}(t) - A^{\star}(t)\right] = \operatorname{E}\left[\left[\widehat{A} - A^{\star}\right](t)\right] = \operatorname{E}\left[\sum_{j: T_{j} < t} \frac{1}{Y(T_{j})^{2}}\right]$$

* Recall from previous page:

$$\widehat{A}(t) - A^{\star}(t) = \int_{0}^{t} \frac{J(s)}{Y(s)} dM(s)$$

* This gives

$$\begin{split} \left[\widehat{A} - A^{\star}\right](t) &= \left[\int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dM(s)\right] = \left[\int \frac{J}{Y} dM\right](t) \\ &= \int_{\mathbf{0}}^{t} \left(\frac{J(s)}{Y(s)}\right)^{2} dN(s) = \sum_{i:T_{i} \leq t} \frac{1}{Y(T_{i})^{2}} \end{split}$$

* So we get

$$\operatorname{Var}\left[\widehat{A}(t) - A^{\star}(t)\right] = \operatorname{E}\left[\left[\widehat{A} - A^{\star}\right](t)\right] = \operatorname{E}\left[\sum_{j:T_{j} < t} \frac{1}{Y(T_{j})^{2}}\right]$$

 \star Thus: An unbiased estimator for $\operatorname{Var}\left[\widehat{A}(t) - A^{\star}(t)
ight]$ is

$$\widehat{\sigma}^{2}(t) = \sum_{j:T_{j} < t} \frac{1}{Y(T_{j})^{2}}$$

Summary

- * We have derived
 - the Nelson-Aalen estimator for A(t)
 - an estimator for the variance of the Nelson-Aalen estimator
- * To do this we have used
 - the Doob-Meyer decomposition (for a counting process)
 - stochastic integrals (and properties of these)
 - properties of martingales
 - properties of an optional variation process

Summary

- * We have derived
 - the Nelson-Aalen estimator for A(t)
 - an estimator for the variance of the Nelson-Aalen estimator
- * To do this we have used
 - the Doob-Meyer decomposition (for a counting process)
 - stochastic integrals (and properties of these)
 - properties of martingales
 - properties of an optional variation process

- * Remaining questions:
 - what is the distribution of $\widehat{A}(t) A^*(t)$ (asymptotically)?
 - what do we do if we observe several events at exactly the same time?