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It can be shown that this expression is valid also when A(t) is not absolutely continuous
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+ Have considered a Markov chain process
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* Characterise the process by

— transition probabilities, Pg(s, t)
— transition intensities (hazard rates), ag(t)
— integrated transition intensities, Agp(t)
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* Note: for some Markov chain situations the expression for I3(5, t) can be simplified

competing risks illness-death model




