TMA4275 Life time analysis

Håkon Tjelmeland Department of Mathematical Sciences Norwegian University of Science and Technology

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t) = P(X(t) = h|X(s) = g)$$
 for $t > s$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t) = P(X(t) = h|X(s) = g)$$
 for $t > s$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

* Transition intensities (hazard rate)

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h | X(t) = g)}{dt} \text{ for } g \neq h$$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

* Transition intensities (hazard rate)

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h | X(t) = g)}{dt} \text{ for } g \neq h$$

* Define

$$\alpha_{gg}(t) = -\sum_{h \neq g} \alpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=1}^{\kappa} \alpha_{gh}(t) = 0$$

\rightarrow 1
\rightarrow (3)

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

* Transition intensities (hazard rate)

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h | X(t) = g)}{dt} \text{ for } g \neq h$$

$$lpha_{gg}(t) = -\sum_{h
eq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=\mathbf{1}}^k lpha_{gh}(t) = \mathbf{0}$$

* Form matrix functions

$$lpha(t) = [lpha_{gh}(t)]$$
 and $P(s,t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

* Transition intensities (hazard rate)

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h | X(t) = g)}{dt} \text{ for } g \neq h$$

★ Define

$$lpha_{gg}(t) = -\sum_{h
eq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=\mathbf{1}}^k lpha_{gh}(t) = \mathbf{0}$$

* Form matrix functions

$$lpha(t) = [lpha_{gh}(t)]$$
 and $P(s,t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

* Transition intensities (hazard rate)

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h|X(t) = g)}{dt} \text{ for } g \neq h$$

★ Define

$$lpha_{gg}(t) = -\sum_{h
eq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=\mathbf{1}}^k lpha_{gh}(t) = \mathbf{0}$$

X(t)

* Form matrix functions

$$lpha(t) = [lpha_{gh}(t)]$$
 and $P(s,t) = [P_{gh}(t)]$: $(k+1) imes (k+1)$ matrices

- * How to express P(s, t) as a function of $\alpha(t)$?
 - we first find $P(t, t + dt) = [P_{gh}(t, t + dt)]$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

* Transition intensities (hazard rate)

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h|X(t) = g)}{dt} \text{ for } g \neq h$$

* Define

$$lpha_{gg}(t) = -\sum_{h
eq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=\mathbf{1}}^k lpha_{gh}(t) = \mathbf{0}$$

* Form matrix functions

$$lpha(t) = [lpha_{gh}(t)]$$
 and $P(s,t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

- we first find
$$P(t, t + dt) = [P_{gh}(t, t + dt)]$$

- for $g \neq h$: $P_{gh}(t, t + dt) = P(X(t + dt) = h|X(t) = g)$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

* Transition intensities (hazard rate)

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h|X(t) = g)}{dt} \text{ for } g \neq h$$

* Define

$$lpha_{gg}(t) = -\sum_{h
eq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=\mathbf{1}}^k lpha_{gh}(t) = \mathbf{0}$$

2

3

* Form matrix functions

$$\alpha(t) = [\alpha_{gh}(t)]$$
 and $P(s, t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

- we first find
$$P(t, t + dt) = [P_{gh}(t, t + dt)]$$

- for $g \neq h$: $P_{gh}(t, t + dt) = P(X(t + dt) = h|X(t) = g) = \alpha_{gh}(t)dt$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h|X(t) = g)}{dt} \text{ for } g \neq h$$

$$lpha_{gg}(t) = -\sum_{h \neq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=1}^{\kappa} lpha_{gh}(t) = 0$$

* Form matrix functions

$$\alpha(t) = [\alpha_{gh}(t)]$$
 and $P(s, t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

- we first find
$$P(t, t + dt) = [P_{gh}(t, t + dt)]$$

- for $g \neq h$: $P_{gh}(t, t + dt) = P(X(t + dt) = h|X(t) = g) = \alpha_{gh}(t)dt$
- for $g = h$: $P_{gg}(t, t + dt) = 1 - \sum_{h \neq g} P_{gh}(t, t + dt)$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

* Transition intensities (hazard rate)

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h|X(t) = g)}{dt} \text{ for } g \neq h$$

★ Define

$$lpha_{gg}(t) = -\sum_{h
eq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=1}^{\kappa} lpha_{gh}(t) = 0$$

* Form matrix functions

$$\alpha(t) = [\alpha_{gh}(t)]$$
 and $P(s, t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

- we first find
$$P(t, t + dt) = [P_{gh}(t, t + dt)]$$

- for $g \neq h$: $P_{gh}(t, t + dt) = P(X(t + dt) = h|X(t) = g) = \alpha_{gh}(t)dt$
- for $g = h$: $P_{gg}(t, t + dt) = 1 - \sum_{h \neq g} P_{gh}(t, t + dt) = 1 - \sum_{h \neq g} \alpha_{gh}(t)dt$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h|X(t) = g)}{dt} \text{ for } g \neq h$$

$$lpha_{gg}(t) = -\sum_{h
eq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=1}^{\kappa} lpha_{gh}(t) = 0$$

* Form matrix functions

$$\alpha(t) = [\alpha_{gh}(t)]$$
 and $P(s, t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

- we first find
$$P(t, t + dt) = [P_{gh}(t, t + dt)]$$

- for $g \neq h$: $P_{gh}(t, t + dt) = P(X(t + dt) = h|X(t) = g) = \alpha_{gh}(t)dt$
- for $g = h$: $P_{gg}(t, t + dt) = 1 - \sum_{h \neq g} P_{gh}(t, t + dt) = 1 - \sum_{h \neq g} \alpha_{gh}(t)dt = 1 + \alpha_{gg}(t)dt$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t)=P(X(t)=h|X(s)=g) \ \ ext{for} \ t>s$$

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h|X(t) = g)}{dt} \text{ for } g \neq h$$

$$lpha_{gg}(t) = -\sum_{h \neq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=1}^{\kappa} lpha_{gh}(t) = 0$$

2

3

* Form matrix functions

$$lpha(t) = [lpha_{gh}(t)]$$
 and $P(s, t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

- we first find
$$P(t, t + dt) = [P_{gh}(t, t + dt)]$$

- for $g \neq h$: $P_{gh}(t, t + dt) = P(X(t + dt) = h|X(t) = g) = \alpha_{gh}(t)dt$
- for $g = h$: $P_{gg}(t, t + dt) = 1 - \sum_{h \neq g} P_{gh}(t, t + dt) = 1 - \sum_{h \neq g} \alpha_{gh}(t)dt = 1 + \alpha_{gg}(t)dt$
- thus we have

$$P(t, t + dt) = \mathbb{I} + \alpha(t)dt$$

(Reference: Section 3.4.3 in Aalen, Borgan and Gjessing, 2008)

- * Let $X = \{X(t); t \in [0, \tau]\}$ be a Markov process
- * State space $X(t) \in S = \{0, 1, \dots, k\}$
- * Transition probabilities

$$P_{gh}(s,t) = P(X(t) = h|X(s) = g)$$
 for $t > s$

$$\alpha_{gh}(t) = \lim_{dt \to \mathbf{0}} \frac{P(X(t+dt) = h|X(t) = g)}{dt} \text{ for } g \neq h$$

$$lpha_{gg}(t) = -\sum_{h \neq g} lpha_{gh}(t) \qquad \Rightarrow \qquad \sum_{h=1}^{\kappa} lpha_{gh}(t) = 0$$

3

* Form matrix functions

$$\alpha(t) = [\alpha_{gh}(t)]$$
 and $P(s, t) = [P_{gh}(t)]$: $(k+1) \times (k+1)$ matrices

* How to express P(s, t) as a function of $\alpha(t)$?

- we first find
$$P(t, t + dt) = [P_{gh}(t, t + dt)]$$

- for $g \neq h$: $P_{gh}(t, t + dt) = P(X(t + dt) = h|X(t) = g) = \alpha_{gh}(t)dt$
- for $g = h$: $P_{gg}(t, t + dt) = 1 - \sum_{h \neq g} P_{gh}(t, t + dt) = 1 - \sum_{h \neq g} \alpha_{gh}(t)dt = 1 + \alpha_{gg}(t)dt$
- thus we have

$$P(t, t + dt) = \mathbb{I} + \alpha(t)dt$$

- next: use this to find P(s, t)

* Want formula for P(s,t) as a function of $\alpha(t)$

 $P(s, t) = [P_{gh}(t)]$ $\alpha(t) = [\alpha_{gh}(t)]$ $P(t, t + dt) = \mathbb{I} + \alpha(t)dt$

 \star Want formula for P(s,t) as a function of $\alpha(t)$

* Divide the interval [s, t] into n small intervals

 $s = t_0 < t_1 < t_2 < \ldots < t_n = t$

 $P(s, t) = [P_{gh}(t)]$ $\alpha(t) = [\alpha_{gh}(t)]$ $P(t, t + dt) = \mathbb{I} + \alpha(t)dt$

 $\star\,$ Want formula for P(s,t) as a function of $\alpha(t)$

$$\xrightarrow{t_0 t_1 \cdots t_n}_{0 \quad s \quad t}$$

 \star Divide the interval [s, t] into n small intervals

$$s = t_0 < t_1 < t_2 < \ldots < t_n = t$$

* Then

$$P(s,t) = P(t_0,t_1)P(t_1,t_2) \cdot \ldots \cdot P(t_{n-1},t_n) = \prod_{i=0}^{n-1} P(t_i,t_{i+1})$$

$$P(s, t) = [P_{gh}(t)]$$
$$\alpha(t) = [\alpha_{gh}(t)]$$
$$P(t, t + dt) = \mathbb{I} + \alpha(t)dt$$

* Want formula for P(s,t) as a function of $\alpha(t)$

$$\xrightarrow{t_0 t_1 \cdots t_n}_{0 \quad s \quad t} \xrightarrow{t_n \quad t_n}_{t}$$

 \star Divide the interval [s, t] into n small intervals

$$s = t_0 < t_1 < t_2 < \ldots < t_n = t$$

* Then

$$P(s,t) = P(t_0,t_1)P(t_1,t_2) \cdot \ldots \cdot P(t_{n-1},t_n) = \prod_{i=0}^{n-1} P(t_i,t_{i+1})$$

 $\star\,$ Now let $n\to\infty$ and let the lengths of all intervals go to zero:

$$P(t_i, t_{i+1}) \approx \mathbb{I} + \alpha(t_i)(t_{i+1} - t_i)$$

$$P(s, t) = [P_{gh}(t)]$$
$$\alpha(t) = [\alpha_{gh}(t)]$$
$$P(t, t + dt) = \mathbb{I} + \alpha(t)dt$$

 \star Want formula for P(s,t) as a function of $\alpha(t)$

$$\xrightarrow{t_0 t_1 \cdots t_n}_{0 \qquad s \qquad t}$$

* Divide the interval [s, t] into n small intervals

$$s = t_0 < t_1 < t_2 < \ldots < t_n = t$$

* Then

$$P(s,t) = P(t_0,t_1)P(t_1,t_2)\cdot\ldots\cdot P(t_{n-1},t_n) = \prod_{i=0}^{n-1} P(t_i,t_{i+1})$$

 $\star\,$ Now let $n\to\infty$ and let the lengths of all intervals go to zero:

$$P(t_i, t_{i+1}) \approx \mathbb{I} + \alpha(t_i)(t_{i+1} - t_i)$$

* In the limit we get

$$P(s,t) = \lim_{\max(t_{i+1}-t_i)\to \mathbf{0}} \prod_{i=0}^{n-1} \left(\mathbb{I} + \alpha(t_i)(t_{i+1}-t_i)\right)$$

 $P(s, t) = [P_{gh}(t)]$ $\alpha(t) = [\alpha_{gh}(t)]$ $P(t, t + dt) = \mathbb{I} + \alpha(t)dt$

 \star Want formula for P(s,t) as a function of $\alpha(t)$

$$\xrightarrow{t_0 t_1 \cdots t_n}_{0 \qquad s \qquad t}$$

* Divide the interval [s, t] into n small intervals

$$s = t_0 < t_1 < t_2 < \ldots < t_n = t$$

$$P(s,t) = P(t_0,t_1)P(t_1,t_2)\cdot\ldots\cdot P(t_{n-1},t_n) = \prod_{i=0}^{n-1} P(t_i,t_{i+1})$$

 $\star\,$ Now let $n\to\infty$ and let the lengths of all intervals go to zero:

$$P(t_i, t_{i+1}) \approx \mathbb{I} + \alpha(t_i)(t_{i+1} - t_i)$$

* In the limit we get

$$P(s,t) = \lim_{\max(t_{i+1}-t_i)\to \mathbf{0}} \prod_{i=\mathbf{0}}^{n-\mathbf{1}} \left(\mathbb{I} + \alpha(t_i)(t_{i+1}-t_i)\right) = \prod_{(s,t]} \left(\mathbb{I} + \alpha(u)du\right)$$

$$P(s, t) = [P_{gh}(t)]$$
$$\alpha(t) = [\alpha_{gh}(t)]$$
$$P(t, t + dt) = \mathbb{I} + \alpha(t)dt$$

 \star Want formula for P(s,t) as a function of $\alpha(t)$

$$\xrightarrow{t_0 t_1 \cdots t_n}_{0 \qquad s \qquad t}$$

* Divide the interval [s, t] into n small intervals

$$s = t_0 < t_1 < t_2 < \ldots < t_n = t$$

$$P(s,t) = P(t_0,t_1)P(t_1,t_2)\cdot\ldots\cdot P(t_{n-1},t_n) = \prod_{i=0}^{n-1} P(t_i,t_{i+1})$$

 $\star\,$ Now let $n\to\infty$ and let the lengths of all intervals go to zero:

$$P(t_i, t_{i+1}) \approx \mathbb{I} + \alpha(t_i)(t_{i+1} - t_i)$$

* In the limit we get

$$P(s,t) = \lim_{\max(t_i+1-t_i)\to \mathbf{0}} \prod_{i=\mathbf{0}}^{n-1} \left(\mathbb{I} + \alpha(t_i)(t_{i+1}-t_i)\right) = \prod_{(s,t)} \left(\mathbb{I} + \alpha(u)du\right)$$

★ Defining

$$A(t) = \int_{\mathbf{0}}^{t} \alpha(u) du$$
 $(k+1) \times (k+1)$ matrix

we can alternatively write this as

$$P(s,t) = \prod_{(s,t]} (\mathbb{I} + dA(u))$$

 $P(s, t) = [P_{gh}(t)]$ $\alpha(t) = [\alpha_{gh}(t)]$ $P(t, t + dt) = \mathbb{I} + \alpha(t)dt$

 \star Want formula for P(s,t) as a function of $\alpha(t)$

$$\xrightarrow{t_0 t_1 \cdots t_n}_{0 \qquad s \qquad t}$$

* Divide the interval [s, t] into n small intervals

$$s = t_0 < t_1 < t_2 < \ldots < t_n = t$$

$$P(s,t) = P(t_0,t_1)P(t_1,t_2)\cdot\ldots\cdot P(t_{n-1},t_n) = \prod_{i=0}^{n-1} P(t_i,t_{i+1})$$

* Now let $n \to \infty$ and let the lengths of all intervals go to zero:

$$P(t_i, t_{i+1}) \approx \mathbb{I} + \alpha(t_i)(t_{i+1} - t_i)$$

* In the limit we get

$$P(s,t) = \lim_{\max(t_i+1-t_i)\to \mathbf{0}} \prod_{i=\mathbf{0}}^{n-1} \left(\mathbb{I} + \alpha(t_i)(t_{i+1}-t_i)\right) = \prod_{(s,t)} \left(\mathbb{I} + \alpha(u)du\right)$$

★ Defining

$$A(t) = \int_{\mathbf{0}}^{t} \alpha(u) du$$
 $(k+1) \times (k+1)$ matrix

we can alternatively write this as

$$P(s,t) = \prod_{(s,t]} (\mathbb{I} + dA(u))$$

 \star It can be shown that this expression is valid also when A(t) is not absolutely continuous

 $P(s, t) = [P_{gh}(t)]$ $\alpha(t) = [\alpha_{gh}(t)]$ $P(t, t + dt) = \mathbb{I} + \alpha(t)dt$

* Situation:

$$P(s,t) = \iint_{(s,t]} (\mathbb{I} + dA(u))$$
$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

- n individuals
- each individual follows a Markov chain specified by some P(s, t)
- we may have trunctation and censoring
- want to use observations to estimate A(t) and P(s, t)

* Situation:

$$P(s,t) = \iint_{(s,t]} (\mathbb{I} + dA(u))$$
$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

- n individuals
- each individual follows a Markov chain specified by some P(s, t)
- we may have trunctation and censoring
- want to use observations to estimate A(t) and P(s, t)

* $N_{gh}(t)$: number of observed transitions from state g to state h up to and including time t

* Situation:

$$P(s,t) = \iint_{(s,t]} (\mathbb{I} + dA(u))$$
$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

- n individuals
- each individual follows a Markov chain specified by some P(s, t)
- we may have trunctation and censoring
- want to use observations to estimate A(t) and P(s, t)
- $\star N_{gh}(t)$: number of observed transitions from state g to state h up to and including time t
- * Use the Nelson–Aalen estimator to estimate $A_{gh}(t)$ from the counting process $N_{gh}(t)$:

$$\widehat{A}_{gh}(t) = \int_{\mathbf{0}}^{t} rac{J_{g}(s)}{Y_{g}(s)} dN_{gh}(s) ext{ for } g
eq h$$

where

- $Y_g(t)$: number of individuals at state g just before time t

$$- J_g(t) = I(Y_g(t) > 0)$$

* Situation:

$$P(s,t) = \iint_{(s,t]} (\mathbb{I} + dA(u))$$
$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

- n individuals
- each individual follows a Markov chain specified by some P(s, t)
- we may have trunctation and censoring
- want to use observations to estimate A(t) and P(s, t)
- $\star N_{gh}(t)$: number of observed transitions from state g to state h up to and including time t
- * Use the Nelson–Aalen estimator to estimate $A_{gh}(t)$ from the counting process $N_{gh}(t)$:

$$\widehat{A}_{gh}(t) = \int_{\mathbf{0}}^{t} rac{J_{g}(s)}{Y_{g}(s)} dN_{gh}(s) ext{ for } g
eq h$$

where

- $Y_g(t)$: number of individuals at state g just before time t- $J_g(t) = I(Y_g(t) > 0)$
- * Define

$$\widehat{A}_{gg}(t) = -\sum_{h
eq g} \widehat{A}_{gh}(t)$$

and form the matrix

$$\widehat{\mathcal{A}}(t) = \left[\widehat{\mathcal{A}}_{gh}(t)
ight]: \; (k+1) imes (k+1) \; \mathsf{matrix}$$

* Situation:

$$P(s,t) = \iint_{(s,t]} (\mathbb{I} + dA(u))$$
$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

- n individuals
- each individual follows a Markov chain specified by some P(s, t)
- we may have trunctation and censoring
- want to use observations to estimate A(t) and P(s, t)
- $\star N_{gh}(t)$: number of observed transitions from state g to state h up to and including time t
- * Use the Nelson–Aalen estimator to estimate $A_{gh}(t)$ from the counting process $N_{gh}(t)$:

$$\widehat{A}_{gh}(t) = \int_{\mathbf{0}}^{t} rac{J_{g}(s)}{Y_{g}(s)} dN_{gh}(s) ext{ for } g
eq h$$

where

- $Y_g(t)$: number of individuals at state g just before time t- $J_g(t) = I(Y_g(t) > 0)$
- * Define

$$\widehat{A}_{gg}(t) = -\sum_{h
eq g} \widehat{A}_{gh}(t)$$

and form the matrix

$$\widehat{A}(t) = \left[\widehat{A}_{gh}(t)
ight]: \ (k+1) imes (k+1)$$
 matrix

* Estimate P(s, t) by

$$\widehat{P}(s,t) = \prod_{(s,t]} \left(\mathbb{I} + d\widehat{A}(u) \right)$$

* Situation:

$$P(s,t) = \iint_{(s,t]} (\mathbb{I} + dA(u))$$
$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

- n individuals
- each individual follows a Markov chain specified by some P(s, t)
- we may have trunctation and censoring
- want to use observations to estimate A(t) and P(s, t)
- $\star N_{gh}(t)$: number of observed transitions from state g to state h up to and including time t
- * Use the Nelson–Aalen estimator to estimate $A_{gh}(t)$ from the counting process $N_{gh}(t)$:

$$\widehat{A}_{gh}(t) = \int_{\mathbf{0}}^{t} rac{J_{g}(s)}{Y_{g}(s)} dN_{gh}(s) ext{ for } g
eq h$$

where

- $Y_g(t)$: number of individuals at state g just before time t- $J_g(t) = I(Y_g(t) > 0)$
- * Define

$$\widehat{A}_{gg}(t) = -\sum_{h
eq g} \widehat{A}_{gh}(t)$$

and form the matrix

$$\widehat{A}(t) = \left[\widehat{A}_{gh}(t)
ight]: \ (k+1) imes(k+1)$$
 matrix

* Estimate P(s, t) by

$$\widehat{P}(s,t) = \iint_{(s,t]} \left(\mathbb{I} + d\widehat{A}(u) \right)$$

$$\xrightarrow{} 0 \quad \overrightarrow{T_1 T_2 s T_3} \quad \overrightarrow{T_4} \quad \overrightarrow{T_5 T_6} \quad \overrightarrow{T_7 T_8} \quad \overrightarrow{T_9}$$

* Situation:

$$P(s,t) = \iint_{(s,t]} (\mathbb{I} + dA(u))$$
$$\widehat{A}(t) = \int_{\mathbf{0}}^{t} \frac{J(s)}{Y(s)} dN(s)$$

- n individuals
- each individual follows a Markov chain specified by some P(s, t)
- we may have trunctation and censoring
- want to use observations to estimate A(t) and P(s, t)
- $\star N_{gh}(t)$: number of observed transitions from state g to state h up to and including time t
- * Use the Nelson–Aalen estimator to estimate $A_{gh}(t)$ from the counting process $N_{gh}(t)$:

$$\widehat{A}_{gh}(t) = \int_{\mathbf{0}}^{t} rac{J_{g}(s)}{Y_{g}(s)} dN_{gh}(s) ext{ for } g
eq h$$

where

- $Y_g(t)$: number of individuals at state g just before time t- $J_g(t) = I(Y_g(t) > 0)$
- * Define

$$\widehat{A}_{gg}(t) = -\sum_{h
eq g} \widehat{A}_{gh}(t)$$

and form the matrix

$$\widehat{A}(t) = \left[\widehat{A}_{gh}(t)
ight]$$
: $(k+1) imes (k+1)$ matrix

* Estimate P(s, t) by

$$\widehat{P}(s,t) = \prod_{(s,t]} \left(\mathbb{I} + d\widehat{A}(u) \right) = \prod_{j:s < T_j \le t} \left(\mathbb{I} + \Delta\widehat{A}(T_j) \right) \text{ where } \Delta\widehat{A}(T_j) = \widehat{A}(T_j) - \widehat{A}(T_j-)$$

$$\xrightarrow{\bullet} \underbrace{\bullet}_{0 \ T_1 T_2 \ s \ T_3} \xrightarrow{\bullet}_{T_4 \ T_5 \ T_6 \ T_7 t \ T_8 \ T_9}$$

Summary

- * Have considered a Markov chain process
- * Characterise the process by
 - transition probabilities, $P_{gh}(s, t)$
 - transition intensities (hazard rates), $\alpha_{gh}(t)$
 - integrated transition intensities, $A_{gh}(t)$
- $\star\,$ Have found relations between $P_{gh}(s,t),\,\alpha_{gh}(t)$ and $A_{gh}(t)$

$$P(s,t) = \prod_{(s,t]} (\mathbb{I} + dA(u))$$

- * Estimation of A(t) and P(s, t)
 - use Nelson-Aalen to estimate each $A_{gh}(t), g \neq h$
 - estimate P(s, t) by

$$\widehat{P}(s,t) = \prod_{(s,t]} \left(\mathbb{I} + d\widehat{A}(u) \right) = \prod_{j:s < T_j \leq t} \left(\mathbb{I} + \Delta \widehat{A}(T_j) \right)$$

Summary

- * Have considered a Markov chain process
- * Characterise the process by
 - transition probabilities, $P_{gh}(s, t)$
 - transition intensities (hazard rates), $\alpha_{gh}(t)$
 - integrated transition intensities, $A_{gh}(t)$
- $\star\,$ Have found relations between ${\it P_{gh}(s,t)},\,\alpha_{gh}(t)$ and ${\it A_{gh}(t)}$

$$P(s,t) = \prod_{(s,t]} (\mathbb{I} + dA(u))$$

- * Estimation of A(t) and P(s, t)
 - use Nelson-Aalen to estimate each $A_{gh}(t), g \neq h$
 - estimate P(s, t) by

$$\widehat{P}(s,t) = \prod_{(s,t]} \left(\mathbb{I} + d\widehat{A}(u) \right) = \prod_{j:s < T_j \le t} \left(\mathbb{I} + \Delta \widehat{A}(T_j) \right)$$

* Note: for some Markov chain situations the expression for $\widehat{P}(s,t)$ can be simplified

competing risks

illness-death model

