TMA4275 Life time analysis

Håkon Tjelmeland
Department of Mathematical Sciences
Norwegian University of Science and Technology

Competing risks

(Reference: Section 3.4.1 in Aalen, Borgan and Gjessing, 2008)

* Competing risks model:

$$
\begin{aligned}
& \widehat{P}(s, t)=\prod_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
& \quad=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)
\end{aligned}
$$

1 dead by cause 1

Competing risks

(Reference: Section 3.4.1 in Aalen, Borgan and Gjessing, 2008)

* Competing risks model:

$$
\widehat{P}(s, t)=\pi_{(s, t]}(\mathbb{I}+d \widehat{A}(u))
$$

* $P(s, t)$ has the following structure

$$
P(s, t)=\left[\begin{array}{ccccc}
P_{\mathbf{0 0}}(s, t) & P_{\mathbf{0 1}}(s, t) & P_{\mathbf{0 2}}(s, t) & \cdots & P_{\mathbf{0}, k}(s, t) \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

Competing risks

(Reference: Section 3.4 .1 in Aalen, Borgan and Gjessing, 2008)

* Competing risks model:

$$
\begin{aligned}
& \widehat{P}(s, t)=\prod_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
& \quad=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)
\end{aligned}
$$

alive

* $P(s, t)$ has the following structure

$$
P(s, t)=\left[\begin{array}{ccccc}
P_{\mathbf{0 0}}(s, t) & P_{\mathbf{0 1}}(s, t) & P_{\mathbf{0 2}}(s, t) & \ldots & P_{\mathbf{0}, k}(s, t) \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

* Want to find formulas for $\widehat{P}_{\mathbf{0 O}}(s, t)$ and $\widehat{P}_{\mathbf{0} h}(s, t)$

Competing risks

(Reference: Section 3.4.1 in Aalen, Borgan and Gjessing, 2008)
\star Competing risks model:

$$
\begin{array}{r}
\widehat{P}(s, t)=\pi_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
\quad=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)
\end{array}
$$

* $P(s, t)$ has the following structure

$$
P(s, t)=\left[\begin{array}{ccccc}
P_{\mathbf{0 0}}(s, t) & P_{\mathbf{0 1}}(s, t) & P_{\mathbf{0 2}}(s, t) & \cdots & P_{\mathbf{0}, k}(s, t) \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & 1
\end{array}\right]
$$

\star Want to find formulas for $\widehat{P}_{\mathbf{0 O}}(s, t)$ and $\widehat{P}_{\mathbf{0} h}(s, t)$

- consider $k=3$
- the factor $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$
- product of two $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$ factors
- product of three $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$ factors
- "guess" on general formula
- general formula can be proved by induction

The factor $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$
\star Competing risks model

$$
\begin{array}{r}
\widehat{P}(s, t)=\pi_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \\
\widehat{A}_{g h}(t)=\int_{0}^{t} \frac{J_{g}(s)}{Y_{g}(s)} d N_{g h}(s) \\
=\sum_{j: T_{j}^{g h} \leq t} \frac{1}{Y_{g}\left(T_{j}^{g h}\right)} \\
\widehat{A}_{g g}(t)=-\sum_{h \neq g} \widehat{A}_{g h}(t)
\end{array}
$$

The factor $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$
\star Competing risks model

$$
\begin{aligned}
& \widehat{P}(s, t)=\pi_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
& =\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)
\end{aligned}
$$

$$
\widehat{A}_{g h}(t)=\int_{0}^{t} \frac{J_{g}(s)}{Y_{g}(s)} d N_{g h}(s)
$$

$$
=\sum_{j: T_{j}^{g h} \leq t} \frac{1}{\gamma_{g}\left(T_{j}^{g h}\right)}
$$

$$
\widehat{A}_{g g}(t)=-\sum_{h \neq g} \widehat{A}_{g h}(t)
$$

* Recall: Observe n individuals following the competing risks model

The factor $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$
\star Competing risks model

$$
\begin{array}{r}
\widehat{P}(s, t)=\pi_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \\
\widehat{A}_{g h}(t)=\int_{0}^{t} \frac{J_{g}(s)}{Y_{g}(s)} d N_{g h}(s) \\
=\sum_{j: T_{j}^{g h} \leq t} \frac{1}{Y_{g}\left(T_{j}^{g h}\right)} \\
\widehat{A}_{g g}(t)=-\sum_{h \neq g} \widehat{A}_{g h}(t)
\end{array}
$$

* Recall: Observe n individuals following the competing risks model
\star Notation: $0<T_{1}<T_{2}<\ldots$

The factor $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$
\star Competing risks model

$$
\begin{array}{r}
\widehat{P}(s, t)=\pi_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \\
\widehat{A}_{g h}(t)=\int_{0}^{t} \frac{J_{g}(s)}{Y_{g}(s)} d N_{g h}(s) \\
=\sum_{j: T_{j}^{g h} \leq t} \frac{1}{\gamma_{g}\left(T_{j}^{g h}\right)} \\
\widehat{A}_{g g}(t)=-\sum_{h \neq g} \widehat{A}_{g h}(t)
\end{array}
$$

* Recall: Observe n individuals following the competing risks model
* Notation: $0<T_{1}<T_{2}<\ldots$

\star For $k=3$, if we at time T_{j} observe a transition from state 0 to state 2 we have

$$
\Delta \widehat{A}\left(T_{j}\right)=\left[\begin{array}{cccc}
-\frac{\mathbf{1}}{Y_{0}\left(T_{j}\right)} & 0 & \frac{1}{Y_{0}\left(T_{j}\right)} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The factor $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$
\star Competing risks model

$$
\begin{aligned}
& \widehat{P}(s, t)=\pi_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
& \quad=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\widehat{A}_{g h}(t) & =\int_{0}^{t} \frac{J_{g}(s)}{Y_{g}(s)} d N_{g h}(s) \\
& =\sum_{j: T_{j}^{g h} \leq t} \frac{1}{\gamma_{g}\left(T_{j}^{g h}\right)} \\
\widehat{A}_{g g}(t) & =-\sum_{h \neq g} \widehat{A}_{g h}(t)
\end{aligned}
$$

\star Recall: Observe n individuals following the competing risks model
\star Notation: $0<T_{1}<T_{2}<\ldots$

* For $k=3$, if we at time T_{j} observe a transition from state 0 to some other state, we have

$$
\Delta \widehat{A}\left(T_{j}\right)=\left[\begin{array}{cccc}
-\frac{\mathbf{1}}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 1}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 2}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 3}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The factor $\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)$
\star Competing risks model

$$
\begin{aligned}
& \widehat{P}(s, t)=\pi_{(s, t]}(\mathbb{I}+d \widehat{A}(u)) \\
& \quad=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\widehat{A}_{g h}(t) & =\int_{0}^{t} \frac{J_{g}(s)}{Y_{g}(s)} d N_{g h}(s) \\
& =\sum_{j: T_{j}^{g h} \leq t} \frac{1}{\gamma_{g}\left(T_{j}^{g h}\right)} \\
\widehat{A}_{g g}(t) & =-\sum_{h \neq g} \widehat{A}_{g h}(t)
\end{aligned}
$$

\star Recall: Observe n individuals following the competing risks model
\star Notation: $0<T_{1}<T_{2}<\ldots$

* For $k=3$, if we at time T_{j} observe a transition from state 0 to some other state, we have

$$
\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)=\left[\begin{array}{cccc}
1-\frac{1}{Y_{0}\left(T_{j}\right)} & \frac{\Delta N_{01}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)} & \frac{\Delta N_{02}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)} & \frac{\Delta N_{03}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Product of two factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right)
$$

$$
=\left[\begin{array}{cccc}
1-\frac{\mathbf{1}}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 1}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 2}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 3}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1-\frac{1}{Y_{0}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 1}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 2}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 3}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Product of two factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right)
$$

$$
=\left[\begin{array}{cccc}
1-\frac{\mathbf{1}}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 1}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 2}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 3}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1-\frac{\mathbf{1}}{Y_{\mathbf{0}}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 1}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 2}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 3}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
a\left(T_{j}\right) & b_{1}\left(T_{j}\right) & b_{\mathbf{2}}\left(T_{j}\right) & b_{\mathbf{3}}\left(T_{j}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
a\left(T_{k}\right) & b_{1}\left(T_{k}\right) & b_{\mathbf{2}}\left(T_{k}\right) & b_{\mathbf{3}}\left(T_{k}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Product of two factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right)
$$

$$
=\left[\begin{array}{cccc}
1-\frac{\mathbf{1}}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 1}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 2}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} & \frac{\Delta N_{\mathbf{0 3}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
1-\frac{\mathbf{1}}{Y_{\mathbf{0}}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 1}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 2}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} & \frac{\Delta N_{\mathbf{0 3}}\left(T_{k}\right)}{Y_{\mathbf{0}}\left(T_{k}\right)} \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
a\left(T_{j}\right) & b_{1}\left(T_{j}\right) & b_{2}\left(T_{j}\right) & b_{\mathbf{3}}\left(T_{j}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \times\left[\begin{array}{cccc}
a\left(T_{k}\right) & b_{\mathbf{1}}\left(T_{k}\right) & b_{\mathbf{2}}\left(T_{k}\right) & b_{\mathbf{3}}\left(T_{k}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cccc}
a\left(T_{j}\right) a\left(T_{k}\right) & a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) & a\left(T_{j}\right) b_{\mathbf{2}}\left(T_{k}\right)+b_{\mathbf{2}}\left(T_{j}\right) & a\left(T_{j}\right) b_{\mathbf{3}}\left(T_{k}\right)+b_{\mathbf{3}}\left(T_{j}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Product of three factors

$$
\begin{array}{r}
a\left(T_{j}\right)=1-\frac{1}{Y_{0}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{0 h}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)}
\end{array}
$$

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
=\left[\begin{array}{cccc}
a\left(T_{j}\right) a\left(T_{k}\right) & a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) & a\left(T_{j}\right) b_{\mathbf{2}}\left(T_{k}\right)+b_{\mathbf{2}}\left(T_{j}\right) & a\left(T_{j}\right) b_{\mathbf{3}}\left(T_{k}\right)+b_{\mathbf{3}}\left(T_{j}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\times\left[\begin{array}{cccc}
1-\frac{1}{Y_{0}\left(T_{l}\right)} & \frac{\Delta N_{01}\left(T_{l}\right)}{Y_{0}\left(T_{l}\right)} & \frac{\Delta N_{02}\left(T_{l}\right)}{Y_{0}\left(T_{l}\right)} & \frac{\Delta N_{03}\left(T_{l}\right)}{Y_{0}\left(T_{l}\right)} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{array}{r}
a\left(T_{j}\right)=1-\frac{1}{Y_{\mathbf{0}}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{0_{h}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}
\end{array}
$$

$$
\begin{gathered}
{\left[\begin{array}{cccc}
a\left(T_{j}\right) a\left(T_{k}\right) & a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) & a\left(T_{j}\right) b_{\mathbf{2}}\left(T_{k}\right)+b_{\mathbf{2}}\left(T_{j}\right) & a\left(T_{j}\right) b_{\mathbf{3}}\left(T_{k}\right)+b_{\mathbf{3}}\left(T_{j}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
\\
\\
\end{gathered}
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{array}{r}
a\left(T_{j}\right)=1-\frac{1}{Y_{\mathbf{0}}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{\mathbf{0} h}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}
\end{array}
$$

$$
=\left[\begin{array}{cccc}
a\left(T_{j}\right) a\left(T_{k}\right) & a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) & a\left(T_{j}\right) b_{\mathbf{2}}\left(T_{k}\right)+b_{\mathbf{2}}\left(T_{j}\right) & a\left(T_{j}\right) b_{\mathbf{3}}\left(T_{k}\right)+b_{\mathbf{3}}\left(T_{j}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\times\left[\begin{array}{cccc}
a\left(T_{l}\right) & b_{1}\left(T_{l}\right) & b_{2}\left(T_{l}\right) & b_{3}\left(T_{l}\right) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{1}\left(T_{l}\right)+a\left(T_{j}\right) b_{1}\left(T_{k}\right)+b_{1}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right.
$$

$$
\left.\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{2}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{2}}\left(T_{k}\right)+b_{\mathbf{2}}\left(T_{j}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{3}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{3}}\left(T_{k}\right)+b_{\mathbf{3}}\left(T_{j}\right) \\
0 & 0 \\
1 & 0 \\
0 & 1
\end{array}\right]
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{gathered}
a\left(T_{j}\right)=1-\frac{1}{Y_{\mathbf{0}}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{0 h}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{1}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{gathered}
a\left(T_{j}\right)=1-\frac{1}{Y_{0}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{0}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)}
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{1}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

* From this we see that

$$
\widehat{P}_{00}(s, t)=\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{11}
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{gathered}
a\left(T_{j}\right)=1-\frac{1}{Y_{0}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{0}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)}
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{1}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

* From this we see that

$$
\widehat{P}_{\mathbf{0 O}}(s, t)=\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1 1}}=\prod_{j: s<T_{j} \leq t} a\left(T_{j}\right)
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{gathered}
a\left(T_{j}\right)=1-\frac{1}{Y_{0}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{0}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)}
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{1}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

* From this we see that

$$
\widehat{P}_{\mathbf{o o}}(s, t)=\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1 1}}=\prod_{j: s<T_{j} \leq t} a\left(T_{j}\right)=\prod_{j: s<T_{j} \leq t}\left(1-\frac{1}{Y_{\mathbf{0}}\left(T_{j}\right)}\right)
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{gathered}
a\left(T_{j}\right)=1-\frac{1}{Y_{0}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{0}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)}
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{1}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

* From this we see that

$$
\begin{aligned}
& \widehat{P}_{\mathbf{o o}}(s, t)=\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1 1}}=\prod_{j: s<T_{j} \leq t} a\left(T_{j}\right)=\prod_{j: s<T_{j} \leq t}\left(1-\frac{1}{Y_{0}\left(T_{j}\right)}\right) \\
& \widehat{P}_{\mathbf{o} h}(s, t)=\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1}, h+\mathbf{1}}
\end{aligned}
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{gathered}
a\left(T_{j}\right)=1-\frac{1}{Y_{0}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{0}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)}
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{1}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

\star From this we see that

$$
\begin{aligned}
& \widehat{P}_{\mathbf{o o}}(s, t)=\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1 1}}=\prod_{j: s<T_{j} \leq t} a\left(T_{j}\right)=\prod_{j: s<T_{j} \leq t}\left(1-\frac{1}{Y_{\mathbf{0}}\left(T_{j}\right)}\right) \\
& \widehat{P}_{\mathbf{o} h}(s, t)=\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1}, h+\mathbf{1}}=\sum_{j: s<T_{j} \leq t}\left[\left(\prod_{k: s<T_{k}<T_{j}} a\left(T_{k}\right)\right) b_{h}\left(T_{j}\right)\right]
\end{aligned}
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{gathered}
a\left(T_{j}\right)=1-\frac{1}{Y_{0}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{\mathbf{0} h}\left(T_{j}\right)}{Y_{0}\left(T_{j}\right)}
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{1}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

* From this we see that

$$
\begin{aligned}
\widehat{P}_{\mathbf{0 0}}(s, t) & =\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1 1}}=\prod_{j: s<T_{j} \leq t} a\left(T_{j}\right)=\prod_{j: s<T_{j} \leq t}\left(1-\frac{1}{Y_{\mathbf{0}}\left(T_{j}\right)}\right) \\
\widehat{P}_{\mathbf{o} h}(s, t) & =\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1}, h+\mathbf{1}}=\sum_{j: s<T_{j} \leq t}\left[\left(\prod_{k: s<T_{k}<T_{j}} a\left(T_{k}\right)\right) b_{h}\left(T_{j}\right)\right] \\
& =\sum_{j: s<T_{j} \leq t} \widehat{P}_{\mathbf{0 0}}\left(s, T_{j}-\right) \cdot \frac{\Delta N_{\mathbf{0} h}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}
\end{aligned}
$$

Product of three factors

$$
\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{k}\right)\right) \times\left(\mathbb{I}+\Delta \widehat{A}\left(T_{l}\right)\right)
$$

$$
\begin{gathered}
a\left(T_{j}\right)=1-\frac{1}{Y_{\mathbf{0}}\left(T_{j}\right)} \\
b_{h}\left(T_{j}\right)=\frac{\Delta N_{\mathbf{o h}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}
\end{gathered}
$$

$$
=\left[\begin{array}{cc}
a\left(T_{j}\right) a\left(T_{k}\right) a\left(T_{l}\right) & a\left(T_{j}\right) a\left(T_{k}\right) b_{\mathbf{1}}\left(T_{l}\right)+a\left(T_{j}\right) b_{\mathbf{1}}\left(T_{k}\right)+b_{\mathbf{1}}\left(T_{j}\right) \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

* From this we see that

$$
\begin{aligned}
\widehat{P}_{\mathbf{0 0}}(s, t) & =\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1 1}}=\prod_{j: s<T_{j} \leq t} a\left(T_{j}\right)=\prod_{j: s<T_{j} \leq t}\left(1-\frac{1}{Y_{\mathbf{0}}\left(T_{j}\right)}\right) \\
\widehat{P}_{\mathbf{0} h}(s, t) & =\left[\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)\right]_{\mathbf{1}, h+\mathbf{1}}=\sum_{j: s<T_{j} \leq t}\left[\left(\prod_{k: s<T_{k}<T_{j}} a\left(T_{k}\right)\right) b_{h}\left(T_{j}\right)\right] \\
& =\sum_{j: s<T_{j} \leq t} \widehat{P}_{\mathbf{0 0}}\left(s, T_{j}-\right) \cdot \frac{\Delta N_{\mathbf{0} h}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}=\sum_{j: s<T_{j} \leq t} \widehat{P}_{\mathbf{0 0}}\left(s, T_{j-\mathbf{1}}\right) \cdot \frac{\Delta N_{\mathbf{0 h}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}
\end{aligned}
$$

Proof for the formulas

* Want to proof the formulas

$$
\begin{aligned}
& \widehat{P}_{\mathbf{o o}}(s, t)=\prod_{j: s<T_{j} \leq t}\left(1-\frac{1}{Y_{0}\left(T_{j}\right)}\right) \\
& \widehat{P}_{\mathbf{o h}}(s, t)=\sum_{j: s<T_{j} \leq t} \widehat{P}_{\mathrm{oo}}\left(s, T_{j-\mathbf{1}}\right) \cdot \frac{\Delta N_{\mathbf{o h}}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}
\end{aligned}
$$

* Given

$$
\widehat{P}(s, t)=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)
$$

* Proof by induction
- proof formulas when only one observed transition in (s, t]

- assume formulas correct for k observed transition in (s, t],

and show that then it is also correct with $k+1$ observed transitions in (s, t]

Summary

* Competing risks model:

* Used Kaplan-Meier estimator for general Markov chain

$$
\widehat{P}(s, t)=\prod_{(s, t]}(\mathbb{I}+d \widehat{A}(u))=\prod_{j: s<T_{j} \leq t}\left(\mathbb{I}+\Delta \widehat{A}\left(T_{j}\right)\right)
$$

* Showed that

$$
\begin{aligned}
& \widehat{P}_{\mathrm{oo}}(s, t)=\prod_{j: s<T_{j} \leq t}\left(1-\frac{1}{Y_{0}\left(T_{j}\right)}\right) \\
& \widehat{P}_{\mathbf{o} h}(s, t)=\sum_{j: s<T_{j} \leq t} \widehat{P}_{\mathrm{oo}}\left(s, T_{j-\mathbf{1}}\right) \cdot \frac{\Delta N_{\mathbf{0} h}\left(T_{j}\right)}{Y_{\mathbf{0}}\left(T_{j}\right)}
\end{aligned}
$$

