# TMA4275 Lifetime analysis

Håkon Tjelmeland Department of Mathematical Sciences Norwegian University of Science and Technology

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)

- ⋆ Counting process
  - consider a particular type of event happening on a time axis
  - assume at most one event (of this type) happens in a short time interval (t,t+dt]
  - -N(t): number of events of this type from type 0 up to (and including) time t
  - increment: dN(t) = N(t + dt) N(t)
- \* Example: Homogeneous Poisson process with intensity  $\lambda$ , N(t) is the number of events happened up to time t

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)

- Counting process
   consider a particular type of event happening on a time axis
  - assume at most one event (of this type) happens in a short time interval (t, t + dt]
  - N(t): number of events of this type from type 0 up to (and including) time t
  - increment: dN(t) = N(t + dt) N(t)
- \* Example: Homogeneous Poisson process with intensity  $\lambda$ , N(t) is the number of events happened up to time t
- \* Intensity process  $\lambda(t)$ :

$$\lambda(t) dt = P(dN(t) = 1 | \mathsf{past}) = \mathsf{E}[dN(t) | \mathsf{past}]$$

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)

- consider a particular type of event happening on a time axis
- assume at most one event (of this type) happens in a short time interval (t, t + dt]
- N(t): number of events of this type from type 0 up to (and including) time t
- increment: dN(t) = N(t + dt) N(t)
- \* Example: Homogeneous Poisson process with intensity  $\lambda$ , N(t) is the number of events happened up to time t
- \* Intensity process  $\lambda(t)$ :

$$\lambda(t) dt = P(dN(t) = 1 | \mathsf{past}) = \mathsf{E}[dN(t) | \mathsf{past}]$$

\* Note: this gives

\* Counting process

$$\begin{split} \mathsf{E}[dN(t) - \lambda(t)dt|\mathsf{past}] &= \mathsf{E}[dN(t)|\mathsf{past}] - \lambda(t)dt \\ &= \lambda(t)dt - \lambda(t)dt = 0 \end{split}$$

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)

- \* Counting process
  - consider a particular type of event happening on a time axis
  - assume at most one event (of this type) happens in a short time interval (t, t + dt]
  - N(t): number of events of this type from type 0 up to (and including) time t
  - increment: dN(t) = N(t + dt) N(t)
- \* Example: Homogeneous Poisson process with intensity  $\lambda$ , N(t) is the number of events happened up to time t
- \* Intensity process  $\lambda(t)$ :

$$\lambda(t) \textit{d}t = \textit{P}(\textit{dN}(t) = 1 | \mathsf{past}) = \mathsf{E}[\textit{dN}(t) | \mathsf{past}]$$

\* Note: this gives

$$\begin{aligned} \mathsf{E}[dN(t) - \lambda(t)dt|\mathsf{past}] &= \mathsf{E}[dN(t)|\mathsf{past}] - \lambda(t)dt \\ &= \lambda(t)dt - \lambda(t)dt = 0 \end{aligned}$$

Defining

$$M(t) = N(t) - \int_0^t \lambda(s) ds$$

we get

$$dM(t) = M(t + dt) - M(t)$$

$$= \left[ N(t + dt) - \int_{\mathbf{0}}^{t+dt} \lambda(s)ds \right] - \left[ N(t) - \int_{\mathbf{0}}^{t} \lambda(s)ds \right]$$

$$= N(t + dt) - N(t) - \lambda(t)dt$$

$$= dN(t) - \lambda(t)dt$$

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)

- \* Counting process
  - consider a particular type of event happening on a time axis
  - assume at most one event (of this type) happens in a short time interval (t, t + dt]
  - N(t): number of events of this type from type 0 up to (and including) time t
  - increment: dN(t) = N(t + dt) N(t)
- \* Example: Homogeneous Poisson process with intensity  $\lambda$ , N(t) is the number of events happened up to time t
- \* Intensity process  $\lambda(t)$ :

$$\lambda(t) dt = P(dN(t) = 1 | \mathsf{past}) = \mathsf{E}[dN(t) | \mathsf{past}]$$

\* Note: this gives

$$\begin{aligned} \mathsf{E}[dN(t) - \lambda(t)dt|\mathsf{past}] &= \mathsf{E}[dN(t)|\mathsf{past}] - \lambda(t)dt \\ &= \lambda(t)dt - \lambda(t)dt = 0 \end{aligned}$$

 $M(t) = N(t) - \int_{-\tau}^{\tau} \lambda(s) ds$ 

Defining

$$dM(t) = M(t + dt) - M(t)$$

$$= \left[ N(t + dt) - \int_{\mathbf{0}}^{t+dt} \lambda(s)ds \right] - \left[ N(t) - \int_{\mathbf{0}}^{t} \lambda(s)ds \right]$$

$$= N(t + dt) - N(t) - \lambda(t)dt$$

$$= dN(t) - \lambda(t)dt$$

and thereby

$$E[dM(t)|past] = 0$$

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)

- \* Counting process
  - consider a particular type of event happening on a time axis
  - assume at most one event (of this type) happens in a short time interval (t, t + dt]
  - -N(t): number of events of this type from type 0 up to (and including) time t
  - increment: dN(t) = N(t + dt) N(t)
- \* Example: Homogeneous Poisson process with intensity  $\lambda$ , N(t) is the number of events happened up to time t
- \* Intensity process  $\lambda(t)$ :

$$\lambda(t) \textit{d}t = \textit{P}(\textit{dN}(t) = 1 | \mathsf{past}) = \mathsf{E}[\textit{dN}(t) | \mathsf{past}]$$

\* Note: this gives

$$\begin{aligned} \mathsf{E}[dN(t) - \lambda(t)dt|\mathsf{past}] &= \mathsf{E}[dN(t)|\mathsf{past}] - \lambda(t)dt \\ &= \lambda(t)dt - \lambda(t)dt = 0 \end{aligned}$$

Definingwe get

$$M(t) = N(t) - \int_{\mathbf{0}}^{t} \lambda(s) ds$$

$$\begin{split} dM(t) &= M(t+dt) - M(t) \\ &= \left[ N(t+dt) - \int_{\mathbf{0}}^{t+dt} \lambda(s) ds \right] - \left[ N(t) - \int_{\mathbf{0}}^{t} \lambda(s) ds \right] \\ &= N(t+dt) - N(t) - \lambda(t) dt \\ &= dN(t) - \lambda(t) dt \end{split}$$

and thereby

$$E[dM(t)|past] = 0$$

 $\star$  M(t) is a martingale

- \* One survival time: T (continuous stochastic variable)
- \* Hazard rate:  $\alpha(t)$

$$\alpha(t) = \lim_{\Delta t \to \mathbf{0}} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t)dt = P(t \le T < t + dt | T \ge t)$$

- \* One survival time: T (continuous stochastic variable)
- \* Hazard rate:  $\alpha(t)$

$$\alpha(t) = \lim_{\Delta t \to \mathbf{0}} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) dt = P(t \le T < t + dt | T \ge t)$$

\* Counting process:  $N^c(t) = I(T \le t)$  (c for complete)



- \* One survival time: T (continuous stochastic variable)
- \* Hazard rate:  $\alpha(t)$

$$\alpha(t) = \lim_{\Delta t \to \mathbf{0}} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) dt = P(t \le T < t + dt | T \ge t)$$

- \* Counting process:  $N^{c}(t) = I(T \le t)$  (c for complete)
- \* Increment of the counting process:

$$dN^{c}(t) = N^{c}(t+dt) - N^{c}(t)$$

$$= I(T \le t + dt) - I(T \le t)$$

$$= I(t < T \le t + dt)$$



- \* One survival time: T (continuous stochastic variable)
- \* Hazard rate:  $\alpha(t)$

$$\alpha(t) = \lim_{\Delta t \to \mathbf{0}} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) dt = P(t \le T < t + dt | T \ge t)$$

- ★ Counting process:  $N^c(t) = I(T \le t)$  (c for complete)
- \* Increment of the counting process:

$$dN^{c}(t) = N^{c}(t + dt) - N^{c}(t)$$

$$= I(T \le t + dt) - I(T \le t)$$

$$= I(t < T \le t + dt)$$

\* Intensity process

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|past) = P(t < T \le t + dt|past)$$

$$= \begin{cases} \alpha(t)dt, & T \ge t \\ 0 & T < t \end{cases}$$

$$= \alpha(t)I(T \ge t)dt$$

- \* One survival time: T (continuous stochastic variable)
- \* Hazard rate:  $\alpha(t)$

$$\alpha(t) = \lim_{\Delta t \to \mathbf{0}} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) dt = P(t \le T < t + dt | T \ge t)$$

- ★ Counting process:  $N^c(t) = I(T \le t)$  (c for complete)
- ⋆ Increment of the counting process:

$$dN^{c}(t) = N^{c}(t + dt) - N^{c}(t)$$

$$= I(T \le t + dt) - I(T \le t)$$

$$= I(t < T \le t + dt)$$

\* Intensity process

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|\mathsf{past}) = P(t < T \le t + dt|\mathsf{past})$$

$$= \begin{cases} \alpha(t)dt, & T \ge t \\ 0 & T < t \end{cases}$$

$$= \alpha(t)I(T \ge t)dt$$

\* Thus

$$\lambda^{c}(t) = \alpha(t)I(T \ge t)$$

- \* One survival time: T (continuous stochastic variable)
- \* Hazard rate:  $\alpha(t)$

$$\alpha(t) = \lim_{\Delta t \to \mathbf{0}} \frac{P(t \le T < t + \Delta t | T \ge t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) dt = P(t \le T < t + dt | T \ge t)$$

- ★ Counting process:  $N^c(t) = I(T \le t)$  (c for complete)
- ⋆ Increment of the counting process:

$$\begin{array}{c}
1 \\
1 \\
T
\end{array}$$

$$dN^{c}(t) = N^{c}(t + dt) - N^{c}(t)$$

$$= I(T \le t + dt) - I(T \le t)$$

$$= I(t < T \le t + dt)$$

\* Intensity process

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|\mathsf{past}) = P(t < T \le t + dt|\mathsf{past})$$

$$= \begin{cases} \alpha(t)dt, & T \ge t \\ 0 & T < t \end{cases}$$

$$= \alpha(t)I(T \ge t)dt$$

\* Thus

$$\lambda^{c}(t) = \alpha(t)I(T \ge t)$$

\* Next: n independent (uncensored) survival times  $T_1, \ldots, T_n$ 

- \* Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$
- \* Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$
- $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t)I(T_i \geq t)$
- \* Aggregated counting process

$$N^{c}(t) = \sum_{i=1}^{n} N_{i}^{c}(t)$$



- \* Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$ 
  - $\star$  Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \leq t)$
  - $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t) I(T_i \geq t)$
  - \* Aggregated counting process



 $\begin{array}{c}
\uparrow (t) \\
1 \\
\downarrow \\
T_i
\end{array}$ 

\* Intensity process for  $N^c(t)$ :

$$\lambda^c(t)dt = P(dN^c(t) = 1|\mathsf{past})$$

- \* Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$ 
  - \* Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$
  - $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t) I(T_i \geq t)$
  - \* Aggregated counting process

$$N^{c}(t) = \sum_{i=1}^{n} N_{i}^{c}(t)$$

1  $T_i$ 

\* Intensity process for  $N^c(t)$ :

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|\mathsf{past}) = \mathsf{E}[dN^{c}(t)|\mathsf{past}]$$

- \* Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$ 
  - \* Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$
  - $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t) I(T_i \geq t)$
  - \* Aggregated counting process

$$N^c(t) = \sum_{i=1}^n N_i^c(t)$$

★ Intensity process for N<sup>c</sup>(t):

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|past) = E[dN^{c}(t)|past] = E\left[\sum_{i=1}^{n} dN_{i}^{c}(t)|past\right]$$



- $\star$  Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$ 
  - \* Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$
  - $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t) I(T_i \geq t)$
  - \* Aggregated counting process



\* Intensity process for  $N^c(t)$ :

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|past) = E[dN^{c}(t)|past] = E\left[\sum_{i=1}^{n} dN_{i}^{c}(t)|past\right]$$
$$= \sum_{i=1}^{n} E[dN_{i}^{c}(t)|past]$$

- $\star$  Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$ 
  - \* Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$
  - $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t) I(T_i \geq t)$
  - \* Aggregated counting process



\* Intensity process for  $N^c(t)$ :

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|past) = E[dN^{c}(t)|past] = E\left[\sum_{i=1}^{n} dN_{i}^{c}(t)\right|past\right]$$
$$= \sum_{i=1}^{n} E[dN_{i}^{c}(t)|past] = \sum_{i=1}^{n} P(dN_{i}^{c}(t) = 1|past)$$

\* Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)

 $N^c(t) = \sum_{i}^{n} N_i^c(t)$ 

- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$ 
  - \* Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$
  - $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t) I(T_i \geq t)$
  - \* Aggregated counting process



\* Intensity process for 
$$N^c(t)$$
:

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|past) = E[dN^{c}(t)|past] = E\left[\sum_{i=1}^{n} dN_{i}^{c}(t)|past\right]$$
$$= \sum_{i=1}^{n} E[dN_{i}^{c}(t)|past] = \sum_{i=1}^{n} P(dN_{i}^{c}(t) = 1|past) = \sum_{i=1}^{n} \lambda_{i}^{c}(t)dt$$

- $\star$  Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$
- \* Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$
- $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t) I(T_i \geq t)$
- \* Aggregated counting process

$$N^{c}(t) = \sum_{i=1}^{n} N_{i}^{c}(t)$$

\* Intensity process for  $N^c(t)$ :

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|\mathsf{past}) = \mathsf{E}\big[dN^{c}(t)|\mathsf{past}\big] = \mathsf{E}\bigg[\sum_{i=1}^{n}dN_{i}^{c}(t)\bigg|\,\mathsf{past}\bigg]$$

$$= \sum_{i=1}^{n}\mathsf{E}\big[dN_{i}^{c}(t)\big|\,\mathsf{past}\big] = \sum_{i=1}^{n}P\big(dN_{i}^{c}(t) = 1\big|\,\mathsf{past}\big) = \sum_{i=1}^{n}\lambda_{i}^{c}(t)dt = \sum_{i=1}^{n}\alpha_{i}(t)I(T_{i} \geq t)dt$$

- $\star$  Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- \* Hazard rate for  $T_i$ :  $\alpha_i(t)$
- \* Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$
- $\star$  Intensity process:  $\lambda_i^c(t) = \alpha_i(t) I(T_i \geq t)$
- \* Aggregated counting process

$$N^c(t) = \sum_{i=1}^n N_i^c(t)$$

\* Intensity process for  $N^c(t)$ :

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|\mathsf{past}) = \mathsf{E}\big[dN^{c}(t)|\mathsf{past}\big] = \mathsf{E}\bigg[\sum_{i=1}^{n}dN_{i}^{c}(t)\bigg|\,\mathsf{past}\bigg]$$

$$= \sum_{i=1}^{n}\mathsf{E}\big[dN_{i}^{c}(t)\big|\,\mathsf{past}\big] = \sum_{i=1}^{n}P\big(dN_{i}^{c}(t) = 1|\,\mathsf{past}\big) = \sum_{i=1}^{n}\lambda_{i}^{c}(t)dt = \sum_{i=1}^{n}\alpha_{i}(t)I(T_{i} \geq t)dt$$

\* Thus

$$\lambda^{c}(t) = \sum_{i=1}^{n} \alpha_{i}(t) I(T_{i} \geq t)$$

- \* Several independent survival times:  $T_1, \ldots, T_n$  (continuous stochastic variables)
- ★ Counting process for  $T_i$ :  $N_i^c(t) = I(T_i \le t)$ 
  - \* Intensity process:  $\lambda_i^c(t) = \alpha_i(t)I(T_i > t)$
  - \* Aggregated counting process

★ Hazard rate for T<sub>i</sub>: α<sub>i</sub>(t)

$$N^{c}(t) = \sum_{i=1}^{n} N_{i}^{c}(t)$$

\* Intensity process for  $N^c(t)$ :

$$\lambda^{c}(t)dt = P(dN^{c}(t) = 1|\mathsf{past}) = \mathsf{E}[dN^{c}(t)|\mathsf{past}] = \mathsf{E}\left[\sum_{i=1}^{n} dN_{i}^{c}(t)\middle|\mathsf{past}\right]$$

$$= \sum_{i=1}^{n} \mathsf{E}[dN_{i}^{c}(t)|\mathsf{past}] = \sum_{i=1}^{n} P(dN_{i}^{c}(t) = 1|\mathsf{past}) = \sum_{i=1}^{n} \lambda_{i}^{c}(t)dt = \sum_{i=1}^{n} \alpha_{i}(t)I(T_{i} \ge t)dt$$

\* Thus

$$\lambda^{c}(t) = \sum_{i=1}^{n} \alpha_{i}(t) I(T_{i} \geq t)$$

\* If  $\alpha_1(t) = \ldots = \alpha_n(t) = \alpha(t)$  we get  $\lambda^{c}(t) = \alpha(t)Y^{c}(t)$ 

where

$$Y^c(t) = \sum I(T_i \geq t)$$
 : the number of individuals at risk just before time  $t$ 

- \* Survival time: T (continuous stochastic variables)
- \* Hazard rate:  $\alpha(t)$
- $\star$  We observe  $(\widetilde{T}, D)$ , where
  - $\widetilde{T}$ : right-censored survival time
  - D: censoring indicator

$$D = \left\{ \begin{array}{ll} 1 & \text{if } \widetilde{T} = T, \\ 0 & \text{if } \widetilde{T} < T \end{array} \right.$$

 $P(t \le \widetilde{T} < t + dt | \widetilde{T} \ge t, past) = P(t \le T < t + dt | T \ge t)$ 

- \*  $N(t) = I(\widetilde{T} \leq t, D = 1)$
- \* Assume independent censoring, i.e

$$\begin{array}{cccc}
& & \downarrow & \downarrow \\
\hline
0 & & t & t + \Delta t
\end{array}$$

- \* Survival time: T (continuous stochastic variables)
- \* Hazard rate:  $\alpha(t)$
- \* We observe  $(\widetilde{T}, D)$ , where
  - $-\widetilde{T}$ : right-censored survival time
  - D: censoring indicator

$$D = \left\{ \begin{array}{ll} 1 & \text{if } \widetilde{T} = T, \\ 0 & \text{if } \widetilde{T} < T \end{array} \right.$$

- \*  $N(t) = I(\widetilde{T} < t, D = 1)$
- \* Assume independent censoring, i.e

$$0$$
  $t$   $t+\Delta t$ 

\* Intensity process for N(t)

$$\lambda(t) extit{d}t = extit{P}( extit{d} extit{N}(t) = 1| exttt{past}) = extit{P}(t \leq \widetilde{T} < t + extit{d}t, extit{D} = 1| exttt{past})$$

 $P(t \le \widetilde{T} < t + dt | \widetilde{T} \ge t, past) = P(t \le T < t + dt | T \ge t)$ 

- \* Survival time: T (continuous stochastic variables)
- \* Hazard rate:  $\alpha(t)$
- \* We observe  $(\widetilde{T}, D)$ , where
  - $\widetilde{T}$ : right-censored survival time
  - D: censoring indicator

$$D = \left\{ \begin{array}{ll} 1 & \text{if } \widetilde{T} = T, \\ 0 & \text{if } \widetilde{T} < T \end{array} \right.$$

- \*  $N(t) = I(\widetilde{T} \leq t, D = 1)$
- \* Assume independent censoring, i.e

\* Intensity process for N(t)

$$\lambda(t) dt = P(dN(t) = 1 | \mathsf{past}) = P(t \leq \widetilde{T} < t + dt, D = 1 | \mathsf{past})$$

 $P(t < \widetilde{T} < t + dt | \widetilde{T} \ge t, past) = P(t \le T < t + dt | T \ge t)$ 

- if 
$$\widetilde{T} < t$$
:  $\lambda(t) = 0$ 

- if 
$$\widetilde{T} \geq t$$
:  $\lambda(t)dt = P(t \leq T < t + dt|\mathsf{past}) = \alpha(t)dt$ 

- \* Survival time: T (continuous stochastic variables)
- \* Hazard rate:  $\alpha(t)$
- $\star$  We observe  $(\widetilde{T}, D)$ , where
  - $-\widetilde{T}$ : right-censored survival time
  - D: censoring indicator

$$D = \left\{ \begin{array}{ll} 1 & \text{if } \widetilde{T} = T, \\ 0 & \text{if } \widetilde{T} < T \end{array} \right.$$

- \*  $N(t) = I(\widetilde{T} \leq t, D = 1)$
- \* Assume independent censoring, i.e



 $P(t < \widetilde{T} < t + dt | \widetilde{T} \ge t, past) = P(t \le T < t + dt | T \ge t)$ 

 $\star$  Intensity process for N(t)

$$\lambda(t)dt = P(dN(t) = 1|past) = P(t \le \widetilde{T} < t + dt, D = 1|past)$$

– if 
$$\widetilde{T} < t$$
:  $\lambda(t) = 0$ 

- if 
$$\widetilde{T} \geq t$$
:  $\lambda(t)dt = P(t \leq T < t + dt|past) = \alpha(t)dt$ 

⋆ Thus

$$\lambda(t) = \alpha(t)I(\widetilde{T} \ge t)$$

- \* Survival time: T (continuous stochastic variables)
- \* Hazard rate:  $\alpha(t)$
- $\star$  We observe  $(\widetilde{T}, D)$ , where
  - $-\widetilde{T}$ : right-censored survival time
  - D: censoring indicator

$$D = \left\{ \begin{array}{ll} 1 & \text{if } \widetilde{T} = T, \\ 0 & \text{if } \widetilde{T} < T \end{array} \right.$$

- \*  $N(t) = I(\widetilde{T} \leq t, D = 1)$
- \* Assume independent censoring, i.e

$$P(t \leq \widetilde{T} < t + dt | \widetilde{T} \geq t, \mathsf{past}) = P(t \leq T < t + dt | T \geq t)$$



\* Intensity process for N(t)

$$\lambda(t)dt = P(dN(t) = 1|past) = P(t \le \widetilde{T} < t + dt, D = 1|past)$$

- if 
$$\widetilde{T} < t$$
:  $\lambda(t) = 0$ 

- if 
$$\widetilde{T} \geq t$$
:  $\lambda(t)dt = P(t \leq T < t + dt|past) = \alpha(t)dt$ 

\* Thus

$$\lambda(t) = \alpha(t)I(\widetilde{T} \ge t)$$

\* Next: n right-censored survival times  $\widetilde{T}_1, \ldots, \widetilde{T}_n$ 

- \* Survival times:  $T_1, \ldots, T_n$  (independent continuous stochastic variables)
- \* Hazard rates:  $\alpha_1(t), \ldots, \alpha_n(t)$ 
  - \* We observe  $(\widetilde{T}_i, D_i)$ , where
    - $\widetilde{T}_i$ : right-censored survival time
    - D<sub>i</sub>: censoring indicator

$$D_i = \begin{cases} 1 & \text{if } \widetilde{T}_i = T_i, \\ 0 & \text{if } \widetilde{T}_i < T_i \end{cases}$$

\* Assume independent censoring, i.e.

$$P(t \leq \widetilde{T}_i < t + dt | \widetilde{T}_i \geq t, \mathsf{past}) = P(t \leq T_i < t + dt | T_i \geq t)$$

- \*  $N_i(t) = I(\widetilde{T}_i \leq t, D_i = 1), \ \lambda_i(t) = \alpha_i(t)I(\widetilde{T}_i \geq t)$
- \* Aggregated counting process

$$N(t) = \sum_{i=1}^{n} N_i(t) = \sum_{i=1}^{n} I(\widetilde{T}_i \leq t, D_i = 1)$$

- \* Survival times:  $T_1, \ldots, T_n$  (independent continuous stochastic variables)
- \* Hazard rates:  $\alpha_1(t), \ldots, \alpha_n(t)$
- \* We observe  $(\widetilde{T}_i, D_i)$ , where
  - $\widetilde{T}_i$ : right-censored survival time
  - D<sub>i</sub>: censoring indicator

$$D_i = \begin{cases} 1 & \text{if } \widetilde{T}_i = T_i, \\ 0 & \text{if } \widetilde{T}_i < T_i \end{cases}$$

\* Assume independent censoring, i.e.

$$P(t \leq \widetilde{T}_i < t + dt | \widetilde{T}_i \geq t, \mathsf{past}) = P(t \leq T_i < t + dt | T_i \geq t)$$

- \*  $N_i(t) = I(\widetilde{T}_i \leq t, D_i = 1), \ \lambda_i(t) = \alpha_i(t)I(\widetilde{T}_i \geq t)$
- \* Aggregated counting process

$$N(t) = \sum_{i=1}^{n} N_i(t) = \sum_{i=1}^{n} I(\widetilde{T}_i \leq t, D_i = 1)$$

 $\star$  Intensity process for N(t)

$$\lambda(t)dt = P(dN(t) = 1|past) =$$

- \* Survival times:  $T_1, \ldots, T_n$  (independent continuous stochastic variables)
- \* Hazard rates:  $\alpha_1(t), \dots, \alpha_n(t)$ 
  - $\star$  We observe  $(\widetilde{T}_i, D_i)$ , where
    - $\widetilde{T}_i$ : right-censored survival time
    - D<sub>i</sub>: censoring indicator

$$D_i = \begin{cases} 1 & \text{if } \widetilde{T}_i = T_i, \\ 0 & \text{if } \widetilde{T}_i < T_i \end{cases}$$

\* Assume independent censoring, i.e.

$$P(t \le \widetilde{T}_i < t + dt | \widetilde{T}_i \ge t, \mathsf{past}) = P(t \le T_i < t + dt | T_i \ge t)$$

$$\star N_i(t) = I(\widetilde{T}_i \le t, D_i = 1), \ \lambda_i(t) = \alpha_i(t) I(\widetilde{T}_i \ge t)$$

★ Aggregated counting process

$$N(t) = \sum_{i=1}^{n} N_i(t) = \sum_{i=1}^{n} I(\widetilde{T}_i \leq t, D_i = 1)$$

\* Intensity process for N(t)

$$\lambda(t)dt = P(dN(t) = 1|past) = E[dN(t)|past] = E\left[\sum_{i=1}^{n} dN_i(t)\right|past$$
$$= \sum_{i=1}^{n} E[dN_i(t)|past] = \sum_{i=1}^{n} P(dN_i(t) = 1|past)$$

- \* Survival times:  $T_1, \ldots, T_n$  (independent continuous stochastic variables)
- \* Hazard rates:  $\alpha_1(t), \ldots, \alpha_n(t)$ 
  - \* We observe  $(\widetilde{T}_i, D_i)$ , where
    - $\widetilde{T}_i$ : right-censored survival time
    - D<sub>i</sub>: censoring indicator

$$D_i = \begin{cases} 1 & \text{if } \widetilde{T}_i = T_i, \\ 0 & \text{if } \widetilde{T}_i < T_i \end{cases}$$

\* Assume independent censoring, i.e.

$$P(t \leq \widetilde{T}_i < t + dt | \widetilde{T}_i \geq t, \mathsf{past}) = P(t \leq T_i < t + dt | T_i \geq t)$$

- \*  $N_i(t) = I(\widetilde{T}_i \leq t, D_i = 1), \ \lambda_i(t) = \alpha_i(t)I(\widetilde{T}_i \geq t)$
- \* Aggregated counting process

$$N(t) = \sum_{i=1}^{n} N_i(t) = \sum_{i=1}^{n} I(\widetilde{T}_i \leq t, D_i = 1)$$

\* Intensity process for N(t)

$$\lambda(t)dt = P(dN(t) = 1|past) = E\left[dN(t)|past\right] = E\left[\sum_{i=1}^{n} dN_{i}(t) \middle| past\right]$$
$$= \sum_{i=1}^{n} E[dN_{i}(t)|past] = \sum_{i=1}^{n} P(dN_{i}(t) = 1|past) = \sum_{i=1}^{n} \lambda_{i}(t)dt$$

- \* Survival times:  $T_1, \ldots, T_n$  (independent continuous stochastic variables)
- \* Hazard rates:  $\alpha_1(t), \ldots, \alpha_n(t)$
- \* We observe  $(\widetilde{T}_i, D_i)$ , where
  - $-\widetilde{T}_i$ : right-censored survival time
  - D<sub>i</sub>: censoring indicator

$$D_i = \begin{cases} 1 & \text{if } \widetilde{T}_i = T_i, \\ 0 & \text{if } \widetilde{T}_i < T_i \end{cases}$$

\* Assume independent censoring, i.e.

$$P(t \leq \widetilde{T}_i < t + dt | \widetilde{T}_i \geq t, \mathsf{past}) = P(t \leq T_i < t + dt | T_i \geq t)$$

- \*  $N_i(t) = I(\widetilde{T}_i \leq t, D_i = 1), \ \lambda_i(t) = \alpha_i(t)I(\widetilde{T}_i \geq t)$
- \* Aggregated counting process

$$N(t) = \sum_{i=1}^{n} N_i(t) = \sum_{i=1}^{n} I(\widetilde{T}_i \leq t, D_i = 1)$$

 $\star$  Intensity process for N(t)

$$\begin{split} \lambda(t)dt &= P(dN(t) = 1|\mathsf{past}) = \mathsf{E}\left[dN(t)|\mathsf{past}\right] = \mathsf{E}\left[\sum_{i=1}^n dN_i(t)\right|\mathsf{past}\right] \\ &= \sum_{i=1}^n \mathsf{E}[dN_i(t)|\mathsf{past}] = \sum_{i=1}^n P(dN_i(t) = 1|\mathsf{past}) = \sum_{i=1}^n \lambda_i(t)dt = \sum_{i=1}^n \alpha_i(t)I(\widetilde{T}_i \geq t)dt \end{split}$$

- \* Survival times:  $T_1, \ldots, T_n$  (independent continuous stochastic variables)
- \* Hazard rates:  $\alpha_1(t), \ldots, \alpha_n(t)$ 
  - \* We observe  $(\widetilde{T}_i, D_i)$ , where
    - $-\widetilde{T}_i$ : right-censored survival time
    - D<sub>i</sub>: censoring indicator

$$D_i = \begin{cases} 1 & \text{if } \widetilde{T}_i = T_i, \\ 0 & \text{if } \widetilde{T}_i < T_i \end{cases}$$

\* Assume independent censoring, i.e.

$$P(t \leq \widetilde{T}_i < t + dt | \widetilde{T}_i \geq t, \mathsf{past}) = P(t \leq T_i < t + dt | T_i \geq t)$$

- \*  $N_i(t) = I(\widetilde{T}_i \leq t, D_i = 1), \ \lambda_i(t) = \alpha_i(t)I(\widetilde{T}_i \geq t)$
- \* Aggregated counting process

$$N(t) = \sum_{i=1}^{n} N_i(t) = \sum_{i=1}^{n} I(\widetilde{T}_i \leq t, D_i = 1)$$

 $\star$  Intensity process for N(t)

$$\lambda(t)dt = P(dN(t) = 1|past) = E\left[dN(t)|past\right] = E\left[\sum_{i=1}^{n} dN_{i}(t)\right| past$$

$$= \sum_{i=1}^{n} E[dN_{i}(t)|past] = \sum_{i=1}^{n} P(dN_{i}(t) = 1|past) = \sum_{i=1}^{n} \lambda_{i}(t)dt = \sum_{i=1}^{n} \alpha_{i}(t)I(\widetilde{T}_{i} \ge t)dt$$

\* If  $\alpha_1(t) = \ldots = \alpha_n(t) = \alpha(t)$  we get

$$\lambda(t)=lpha(t)Y(t)$$
 where  $Y(t)=\sum_{i=1}^{n}I(\widetilde{T}_{i}\geq t)$ : # individuals at risk just before time  $t$ 

#### Summary

- \* Have defined (informally)
  - counting process
  - intensity process of a counting process,  $\lambda(t)$
  - independent censoring
- $\star$  Have found formulas for  $\lambda(t)$  in the case of
  - one uncensored survival time
  - several uncensored survival times
  - one censored survival time (assuming independent censoring)
  - several censored survival times (assuming independent censoring)
- \* Multiplicative intensity process

$$\lambda(t) = \alpha(t)Y(t)$$