TMA4275 Lifetime analysis

Håkon Tjelmeland
Department of Mathematical Sciences
Norwegian University of Science and Technology

Counting processes

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)
\star Counting process

- consider a particular type of event happening on a time axis
- assume at most one event (of this type) happens in a short time interval ($t, t+d t]$
- $N(t)$: number of events of this type from type 0 up to (and including) time t
- increment: $d N(t)=N(t+d t)-N(t)$
\star Example: Homogeneous Poisson process with intensity $\lambda, N(t)$ is the number of events happened up to time t

Counting processes

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)
\star Counting process

- consider a particular type of event happening on a time axis
- assume at most one event (of this type) happens in a short time interval ($t, t+d t]$
- $N(t)$: number of events of this type from type 0 up to (and including) time t
- increment: $d N(t)=N(t+d t)-N(t)$
\star Example: Homogeneous Poisson process with intensity $\lambda, N(t)$ is the number of events happened up to time t
\star Intensity process $\lambda(t)$:

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]
$$

Counting processes

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)
\star Counting process

- consider a particular type of event happening on a time axis
- assume at most one event (of this type) happens in a short time interval ($t, t+d t$]
- $N(t)$: number of events of this type from type 0 up to (and including) time t
- increment: $d N(t)=N(t+d t)-N(t)$
\star Example: Homogeneous Poisson process with intensity $\lambda, N(t)$ is the number of events happened up to time t
\star Intensity process $\lambda(t)$:

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]
$$

\star Note: this gives

$$
\begin{aligned}
\mathrm{E}[d N(t)-\lambda(t) d t \mid \text { past }] & =\mathrm{E}[d N(t) \mid \text { past }]-\lambda(t) d t \\
& =\lambda(t) d t-\lambda(t) d t=0
\end{aligned}
$$

Counting processes

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)
\star Counting process

- consider a particular type of event happening on a time axis
- assume at most one event (of this type) happens in a short time interval ($t, t+d t$]
- $N(t)$: number of events of this type from type 0 up to (and including) time t
- increment: $d N(t)=N(t+d t)-N(t)$
* Example: Homogeneous Poisson process with intensity $\lambda, N(t)$ is the number of events happened up to time t
\star Intensity process $\lambda(t)$:

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]
$$

\star Note: this gives

$$
\begin{aligned}
\mathrm{E}[d N(t)-\lambda(t) d t \mid \text { past }] & =\mathrm{E}[d N(t) \mid \text { past }]-\lambda(t) d t \\
& =\lambda(t) d t-\lambda(t) d t=0
\end{aligned}
$$

* Defining
we get

$$
M(t)=N(t)-\int_{0}^{t} \lambda(s) d s
$$

$$
\begin{aligned}
d M(t) & =M(t+d t)-M(t) \\
& =\left[N(t+d t)-\int_{0}^{t+d t} \lambda(s) d s\right]-\left[N(t)-\int_{0}^{t} \lambda(s) d s\right] \\
& =N(t+d t)-N(t)-\lambda(t) d t \\
& =d N(t)-\lambda(t) d t
\end{aligned}
$$

Counting processes

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)
\star Counting process

- consider a particular type of event happening on a time axis
- assume at most one event (of this type) happens in a short time interval ($t, t+d t$]
- $N(t)$: number of events of this type from type 0 up to (and including) time t
- increment: $d N(t)=N(t+d t)-N(t)$
* Example: Homogeneous Poisson process with intensity $\lambda, N(t)$ is the number of events happened up to time t
\star Intensity process $\lambda(t)$:

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]
$$

\star Note: this gives

$$
\begin{aligned}
\mathrm{E}[d N(t)-\lambda(t) d t \mid \text { past }] & =\mathrm{E}[d N(t) \mid \text { past }]-\lambda(t) d t \\
& =\lambda(t) d t-\lambda(t) d t=0
\end{aligned}
$$

* Defining
we get

$$
M(t)=N(t)-\int_{0}^{t} \lambda(s) d s
$$

$$
\begin{aligned}
d M(t) & =M(t+d t)-M(t) \\
& =\left[N(t+d t)-\int_{0}^{t+d t} \lambda(s) d s\right]-\left[N(t)-\int_{0}^{t} \lambda(s) d s\right] \\
& =N(t+d t)-N(t)-\lambda(t) d t \\
& =d N(t)-\lambda(t) d t
\end{aligned}
$$

and thereby

$$
\mathrm{E}[d M(t) \mid \text { past }]=0
$$

Counting processes

(Reference: Section 1.4 in Aalen, Borgan and Gjessing, 2008)
\star Counting process

- consider a particular type of event happening on a time axis
- assume at most one event (of this type) happens in a short time interval ($t, t+d t$]
- $N(t)$: number of events of this type from type 0 up to (and including) time t
- increment: $d N(t)=N(t+d t)-N(t)$
* Example: Homogeneous Poisson process with intensity $\lambda, N(t)$ is the number of events happened up to time t
\star Intensity process $\lambda(t)$:

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]
$$

\star Note: this gives

$$
\begin{aligned}
\mathrm{E}[d N(t)-\lambda(t) d t \mid \text { past }] & =\mathrm{E}[d N(t) \mid \text { past }]-\lambda(t) d t \\
& =\lambda(t) d t-\lambda(t) d t=0
\end{aligned}
$$

* Defining
we get

$$
M(t)=N(t)-\int_{0}^{t} \lambda(s) d s
$$

$$
\begin{aligned}
d M(t) & =M(t+d t)-M(t) \\
& =\left[N(t+d t)-\int_{0}^{t+d t} \lambda(s) d s\right]-\left[N(t)-\int_{0}^{t} \lambda(s) d s\right] \\
& =N(t+d t)-N(t)-\lambda(t) d t \\
& =d N(t)-\lambda(t) d t
\end{aligned}
$$

and thereby

$$
\mathrm{E}[d M(t) \mid \text { past }]=0
$$

$\star M(t)$ is a martingale

One (uncensored) survival time

\star One survival time: T (continuous stochastic variable)

* Hazard rate: $\alpha(t)$

$$
\alpha(t)=\lim _{\Delta t \rightarrow \mathbf{0}} \frac{P(t \leq T<t+\Delta t \mid T \geq t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) d t=P(t \leq T<t+d t \mid T \geq t)
$$

One (uncensored) survival time

\star One survival time: T (continuous stochastic variable)

* Hazard rate: $\alpha(t)$

$$
\alpha(t)=\lim _{\Delta t \rightarrow \mathbf{0}} \frac{P(t \leq T<t+\Delta t \mid T \geq t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) d t=P(t \leq T<t+d t \mid T \geq t)
$$

\star Counting process: $N^{c}(t)=I(T \leq t) \quad$ (c for complete)

One (uncensored) survival time

\star One survival time: T (continuous stochastic variable)

* Hazard rate: $\alpha(t)$

$$
\alpha(t)=\lim _{\Delta t \rightarrow \mathbf{0}} \frac{P(t \leq T<t+\Delta t \mid T \geq t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) d t=P(t \leq T<t+d t \mid T \geq t)
$$

\star Counting process: $N^{c}(t)=I(T \leq t) \quad$ (c for complete)
\star Increment of the counting process:

$$
\begin{aligned}
d N^{c}(t) & =N^{c}(t+d t)-N^{c}(t) \\
& =I(T \leq t+d t)-I(T \leq t) \\
& =I(t<T \leq t+d t)
\end{aligned}
$$

One (uncensored) survival time

\star One survival time: T (continuous stochastic variable)

* Hazard rate: $\alpha(t)$

$$
\alpha(t)=\lim _{\Delta t \rightarrow 0} \frac{P(t \leq T<t+\Delta t \mid T \geq t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) d t=P(t \leq T<t+d t \mid T \geq t)
$$

\star Counting process: $N^{c}(t)=I(T \leq t) \quad$ (c for complete)
\star Increment of the counting process:

$$
\begin{aligned}
d N^{c}(t) & =N^{c}(t+d t)-N^{c}(t) \\
& =I(T \leq t+d t)-I(T \leq t) \\
& =I(t<T \leq t+d t)
\end{aligned}
$$

* Intensity process

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=P(t<T \leq t+d t \mid \text { past }) \\
& = \begin{cases}\alpha(t) d t, & T \geq t \\
0 & T<t\end{cases} \\
& =\alpha(t) l(T \geq t) d t
\end{aligned}
$$

One (uncensored) survival time

\star One survival time: T (continuous stochastic variable)

* Hazard rate: $\alpha(t)$

$$
\alpha(t)=\lim _{\Delta t \rightarrow 0} \frac{P(t \leq T<t+\Delta t \mid T \geq t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) d t=P(t \leq T<t+d t \mid T \geq t)
$$

\star Counting process: $N^{c}(t)=I(T \leq t) \quad$ (c for complete)
\star Increment of the counting process:

$$
\begin{aligned}
d N^{c}(t) & =N^{c}(t+d t)-N^{c}(t) \\
& =I(T \leq t+d t)-I(T \leq t) \\
& =I(t<T \leq t+d t)
\end{aligned}
$$

* Intensity process

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=P(t<T \leq t+d t \mid \text { past }) \\
& = \begin{cases}\alpha(t) d t, & T \geq t \\
0 & T<t\end{cases} \\
& =\alpha(t) l(T \geq t) d t
\end{aligned}
$$

* Thus

$$
\lambda^{c}(t)=\alpha(t) I(T \geq t)
$$

One (uncensored) survival time

\star One survival time: T (continuous stochastic variable)

* Hazard rate: $\alpha(t)$

$$
\alpha(t)=\lim _{\Delta t \rightarrow 0} \frac{P(t \leq T<t+\Delta t \mid T \geq t)}{\Delta t} \quad \Leftrightarrow \quad \alpha(t) d t=P(t \leq T<t+d t \mid T \geq t)
$$

\star Counting process: $N^{c}(t)=I(T \leq t) \quad$ (c for complete)
\star Increment of the counting process:

$$
\begin{aligned}
d N^{c}(t) & =N^{c}(t+d t)-N^{c}(t) \\
& =I(T \leq t+d t)-I(T \leq t) \\
& =I(t<T \leq t+d t)
\end{aligned}
$$

* Intensity process

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=P(t<T \leq t+d t \mid \text { past }) \\
& = \begin{cases}\alpha(t) d t, & T \geq t \\
0 & T<t\end{cases} \\
& =\alpha(t) l(T \geq t) d t
\end{aligned}
$$

* Thus

$$
\lambda^{c}(t)=\alpha(t) I(T \geq t)
$$

* Next: n independent (uncensored) survival times T_{1}, \ldots, T_{n}

Several (uncensored) survival times

\star Several independent survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (continuous stochastic variables)
\star Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
\star Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) I\left(T_{i} \geq t\right)$
\star Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

Several (uncensored) survival times

\star Several independent survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (continuous stochastic variables)
\star Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
\star Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) I\left(T_{i} \geq t\right)$
\star Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\lambda^{c}(t) d t=P\left(d N^{c}(t)=1 \mid \text { past }\right)
$$

Several (uncensored) survival times

\star Several independent survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (continuous stochastic variables)
\star Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
\star Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) I\left(T_{i} \geq t\right)$
\star Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\lambda^{c}(t) d t=P\left(d N^{c}(t)=1 \mid \text { past }\right)=\mathrm{E}\left[d N^{c}(t) \mid \text { past }\right]
$$

Several (uncensored) survival times

\star Several independent survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (continuous stochastic variables)
\star Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
\star Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) I\left(T_{i} \geq t\right)$
\star Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\lambda^{c}(t) d t=P\left(d N^{c}(t)=1 \mid \text { past }\right)=\mathrm{E}\left[d N^{c}(t) \mid \text { past }\right]=\mathrm{E}\left[\sum_{i=1}^{n} d N_{i}^{c}(t) \mid \text { past }\right]
$$

Several (uncensored) survival times

\star Several independent survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (continuous stochastic variables)
\star Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
\star Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) I\left(T_{i} \geq t\right)$
\star Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=\mathrm{E}\left[d N^{c}(t) \mid \text { past }\right]=\mathrm{E}\left[\sum_{i=1}^{n} d N_{i}^{c}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}^{c}(t) \mid \text { past }\right]
\end{aligned}
$$

Several (uncensored) survival times

\star Several independent survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (continuous stochastic variables)
\star Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
\star Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) I\left(T_{i} \geq t\right)$
\star Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=\mathrm{E}\left[d N^{c}(t) \mid \text { past }\right]=\mathrm{E}\left[\sum_{i=1}^{n} d N_{i}^{c}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}^{c}(t) \mid \text { past }\right]=\sum_{i=1}^{n} P\left(d N_{i}^{c}(t)=1 \mid \text { past }\right)
\end{aligned}
$$

Several (uncensored) survival times

\star Several independent survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (continuous stochastic variables)
\star Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
\star Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) I\left(T_{i} \geq t\right)$
\star Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=\mathrm{E}\left[d N^{c}(t) \mid \text { past }\right]=\mathrm{E}\left[\sum_{i=1}^{n} d N_{i}^{c}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}^{c}(t) \mid \text { past }\right]=\sum_{i=1}^{n} P\left(d N_{i}^{c}(t)=1 \mid \text { past }\right)=\sum_{i=1}^{n} \lambda_{i}^{c}(t) d t
\end{aligned}
$$

Several (uncensored) survival times

\star Several independent survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (continuous stochastic variables)
\star Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
\star Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) I\left(T_{i} \geq t\right)$
\star Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=\mathrm{E}\left[d N^{c}(t) \mid \text { past }\right]=\mathrm{E}\left[\sum_{i=\mathbf{1}}^{n} d N_{i}^{c}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}^{c}(t) \mid \text { past }\right]=\sum_{i=1}^{n} P\left(d N_{i}^{c}(t)=1 \mid \text { past }\right)=\sum_{i=1}^{n} \lambda_{i}^{c}(t) d t=\sum_{i=\mathbf{1}}^{n} \alpha_{i}(t) I\left(T_{i} \geq t\right) d t
\end{aligned}
$$

Several (uncensored) survival times

* Several independent survival times: T_{1}, \ldots, T_{n} (continuous stochastic variables)
* Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
* Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) l\left(T_{i} \geq t\right)$
* Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=\mathrm{E}\left[d N^{c}(t) \mid \text { past }\right]=\mathrm{E}\left[\sum_{i=\mathbf{1}}^{n} d N_{i}^{c}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}^{c}(t) \mid \text { past }\right]=\sum_{i=\mathbf{1}}^{n} P\left(d N_{i}^{c}(t)=1 \mid \text { past }\right)=\sum_{i=\mathbf{1}}^{n} \lambda_{i}^{c}(t) d t=\sum_{i=1}^{n} \alpha_{i}(t) l\left(T_{i} \geq t\right) d t
\end{aligned}
$$

* Thus

$$
\lambda^{c}(t)=\sum_{i=1}^{n} \alpha_{i}(t) l\left(T_{i} \geq t\right)
$$

Several (uncensored) survival times

\star Several independent survival times: T_{1}, \ldots, T_{n} (continuous stochastic variables)

* Hazard rate for $T_{i}: \alpha_{i}(t)$
\star Counting process for $T_{i}: N_{i}^{c}(t)=I\left(T_{i} \leq t\right)$
* Intensity process: $\lambda_{i}^{c}(t)=\alpha_{i}(t) l\left(T_{i} \geq t\right)$
* Aggregated counting process

$$
N^{c}(t)=\sum_{i=1}^{n} N_{i}^{c}(t)
$$

* Intensity process for $N^{c}(t)$:

$$
\begin{aligned}
\lambda^{c}(t) d t & =P\left(d N^{c}(t)=1 \mid \text { past }\right)=\mathrm{E}\left[d N^{c}(t) \mid \text { past }\right]=\mathrm{E}\left[\sum_{i=1}^{n} d N_{i}^{c}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}^{c}(t) \mid \text { past }\right]=\sum_{i=1}^{n} P\left(d N_{i}^{c}(t)=1 \mid \text { past }\right)=\sum_{i=1}^{n} \lambda_{i}^{c}(t) d t=\sum_{i=1}^{n} \alpha_{i}(t) l\left(T_{i} \geq t\right) d t
\end{aligned}
$$

* Thus

$$
\lambda^{c}(t)=\sum_{i=1}^{n} \alpha_{i}(t) l\left(T_{i} \geq t\right)
$$

\star If $\alpha_{\mathbf{1}}(t)=\ldots=\alpha_{n}(t)=\alpha(t)$ we get

$$
\lambda^{c}(t)=\alpha(t) Y^{c}(t)
$$

where

$$
Y^{c}(t)=\sum_{i=1}^{n} I\left(T_{i} \geq t\right): \text { the number of individuals at risk just before time } t
$$

Independent censoring - one survival time

* Survival time: T (continuous stochastic variables)
\star Hazard rate: $\alpha(t)$
\star We observe (\widetilde{T}, D), where
- \widetilde{T} : right-censored survival time
- D : censoring indicator

$$
D= \begin{cases}1 & \text { if } \widetilde{T}=T \\ 0 & \text { if } \widetilde{T}<T\end{cases}
$$

$\star N(t)=I(\tilde{T} \leq t, D=1)$
\star Assume independent censoring, i.e

$$
P(t \leq \tilde{T}<t+d t \mid \tilde{T} \geq t, \text { past })=P(t \leq T<t+d t \mid T \geq t)
$$

Independent censoring - one survival time

* Survival time: T (continuous stochastic variables)
\star Hazard rate: $\alpha(t)$
\star We observe (\widetilde{T}, D), where
- \widetilde{T} : right-censored survival time
- D : censoring indicator

$$
D= \begin{cases}1 & \text { if } \widetilde{T}=T \\ 0 & \text { if } \widetilde{T}<T\end{cases}
$$

$\star N(t)=I(\tilde{T} \leq t, D=1)$

* Assume independent censoring, i.e

$$
P(t \leq \widetilde{T}<t+d t \mid \widetilde{T} \geq t, \text { past })=P(t \leq T<t+d t \mid T \geq t)
$$

* Intensity process for $N(t)$

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=P(t \leq \widetilde{T}<t+d t, D=1 \mid \text { past })
$$

Independent censoring - one survival time

* Survival time: T (continuous stochastic variables)
\star Hazard rate: $\alpha(t)$
\star We observe (\widetilde{T}, D), where
- \widetilde{T} : right-censored survival time
- D : censoring indicator

$$
D= \begin{cases}1 & \text { if } \widetilde{T}=T \\ 0 & \text { if } \widetilde{T}<T\end{cases}
$$

$\star N(t)=I(\tilde{T} \leq t, D=1)$
\star Assume independent censoring, i.e

$$
P(t \leq \widetilde{T}<t+d t \mid \widetilde{T} \geq t, \text { past })=P(t \leq T<t+d t \mid T \geq t)
$$

\star Intensity process for $N(t)$

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=P(t \leq \widetilde{T}<t+d t, D=1 \mid \text { past })
$$

- if $\widetilde{T}<t: \lambda(t)=0$
- if $\widetilde{T} \geq t: \lambda(t) d t=P(t \leq T<t+d t \mid$ past $)=\alpha(t) d t$

Independent censoring - one survival time

* Survival time: T (continuous stochastic variables)
* Hazard rate: $\alpha(t)$
\star We observe (\widetilde{T}, D), where
- \widetilde{T} : right-censored survival time
- D : censoring indicator

$$
D= \begin{cases}1 & \text { if } \widetilde{T}=T \\ 0 & \text { if } \widetilde{T}<T\end{cases}
$$

$\star N(t)=I(\tilde{T} \leq t, D=1)$

* Assume independent censoring, i.e

$$
P(t \leq \widetilde{T}<t+d t \mid \widetilde{T} \geq t, \text { past })=P(t \leq T<t+d t \mid T \geq t)
$$

\star Intensity process for $N(t)$

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=P(t \leq \widetilde{T}<t+d t, D=1 \mid \text { past })
$$

- if $\widetilde{T}<t: \lambda(t)=0$
- if $\widetilde{T} \geq t: \lambda(t) d t=P(t \leq T<t+d t \mid$ past $)=\alpha(t) d t$
* Thus

$$
\lambda(t)=\alpha(t) I(\tilde{T} \geq t)
$$

Independent censoring - one survival time

* Survival time: T (continuous stochastic variables)
* Hazard rate: $\alpha(t)$
\star We observe (\widetilde{T}, D), where
- \widetilde{T} : right-censored survival time
- D: censoring indicator

$$
D= \begin{cases}1 & \text { if } \widetilde{T}=T \\ 0 & \text { if } \widetilde{T}<T\end{cases}
$$

$\star N(t)=I(\tilde{T} \leq t, D=1)$
\star Assume independent censoring, i.e

$$
P(t \leq \widetilde{T}<t+d t \mid \widetilde{T} \geq t, \text { past })=P(t \leq T<t+d t \mid T \geq t)
$$

\star Intensity process for $N(t)$

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=P(t \leq \widetilde{T}<t+d t, D=1 \mid \text { past })
$$

- if $\widetilde{T}<t: \lambda(t)=0$
- if $\widetilde{T} \geq t: \lambda(t) d t=P(t \leq T<t+d t \mid$ past $)=\alpha(t) d t$
* Thus

$$
\lambda(t)=\alpha(t) I(\tilde{T} \geq t)
$$

* Next: n right-censored survival times $\widetilde{T}_{1}, \ldots, \widetilde{T}_{n}$

Independent censoring - several survival times

* Survival times: T_{1}, \ldots, T_{n} (independent continuous stochastic variables)
\star Hazard rates: $\alpha_{1}(t), \ldots, \alpha_{n}(t)$
\star We observe ($\left.\widetilde{T}_{i}, D_{i}\right)$, where
- \widetilde{T}_{i} : right-censored survival time
- D_{i} : censoring indicator

$$
D_{i}= \begin{cases}1 & \text { if } \widetilde{T}_{i}=T_{i}, \\ 0 & \text { if } \widetilde{T}_{i}<T_{i}\end{cases}
$$

\star Assume independent censoring, i.e.

$$
P\left(t \leq \widetilde{T}_{i}<t+d t \mid \widetilde{T}_{i} \geq t, \text { past }\right)=P\left(t \leq T_{i}<t+d t \mid T_{i} \geq t\right)
$$

$\star N_{i}(t)=I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right), \lambda_{i}(t)=\alpha_{i}(t) I\left(\widetilde{T}_{i} \geq t\right)$

* Aggregated counting process

$$
N(t)=\sum_{i=1}^{n} N_{i}(t)=\sum_{i=1}^{n} I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right)
$$

Independent censoring - several survival times

\star Survival times: $T_{\mathbf{1}}, \ldots, T_{n}$ (independent continuous stochastic variables)
\star Hazard rates: $\alpha_{1}(t), \ldots, \alpha_{n}(t)$
\star We observe ($\left.\tilde{T}_{i}, D_{i}\right)$, where

- \tilde{T}_{i} : right-censored survival time
- D_{i} : censoring indicator

$$
D_{i}= \begin{cases}1 & \text { if } \widetilde{T}_{i}=T_{i} \\ 0 & \text { if } \widetilde{T}_{i}<T_{i}\end{cases}
$$

* Assume independent censoring, i.e.

$$
P\left(t \leq \widetilde{T}_{i}<t+d t \mid \widetilde{T}_{i} \geq t, \text { past }\right)=P\left(t \leq T_{i}<t+d t \mid T_{i} \geq t\right)
$$

$\star N_{i}(t)=I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right), \lambda_{i}(t)=\alpha_{i}(t) I\left(\widetilde{T}_{i} \geq t\right)$
\star Aggregated counting process

$$
N(t)=\sum_{i=1}^{n} N_{i}(t)=\sum_{i=1}^{n} I\left(\tilde{T}_{i} \leq t, D_{i}=1\right)
$$

* Intensity process for $N(t)$

$$
\lambda(t) d t=P(d N(t)=1 \mid \text { past })=
$$

Independent censoring - several survival times

* Survival times: T_{1}, \ldots, T_{n} (independent continuous stochastic variables)
\star Hazard rates: $\alpha_{1}(t), \ldots, \alpha_{n}(t)$
* We observe (\widetilde{T}_{i}, D_{i}), where
- \widetilde{T}_{i} : right-censored survival time
- D_{i} : censoring indicator

$$
D_{i}= \begin{cases}1 & \text { if } \widetilde{T}_{i}=T_{i}, \\ 0 & \text { if } \widetilde{T}_{i}<T_{i}\end{cases}
$$

* Assume independent censoring, i.e.

$$
P\left(t \leq \widetilde{T}_{i}<t+d t \mid \widetilde{T}_{i} \geq t, \text { past }\right)=P\left(t \leq T_{i}<t+d t \mid T_{i} \geq t\right)
$$

* $N_{i}(t)=I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right), \lambda_{i}(t)=\alpha_{i}(t) I\left(\widetilde{T}_{i} \geq t\right)$
* Aggregated counting process

$$
N(t)=\sum_{i=1}^{n} N_{i}(t)=\sum_{i=1}^{n} I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right)
$$

* Intensity process for $N(t)$

$$
\begin{aligned}
\lambda(t) d t & =P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]=\mathrm{E}\left[\sum_{i=\mathbf{1}}^{n} d N_{i}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}(t) \mid \text { past }\right]=\sum_{i=1}^{n} P\left(d N_{i}(t)=1 \mid \text { past }\right)
\end{aligned}
$$

Independent censoring - several survival times

* Survival times: T_{1}, \ldots, T_{n} (independent continuous stochastic variables)
\star Hazard rates: $\alpha_{1}(t), \ldots, \alpha_{n}(t)$
* We observe (\widetilde{T}_{i}, D_{i}), where
- \widetilde{T}_{i} : right-censored survival time
- D_{i} : censoring indicator

$$
D_{i}= \begin{cases}1 & \text { if } \widetilde{T}_{i}=T_{i}, \\ 0 & \text { if } \widetilde{T}_{i}<T_{i}\end{cases}
$$

* Assume independent censoring, i.e.

$$
P\left(t \leq \widetilde{T}_{i}<t+d t \mid \widetilde{T}_{i} \geq t, \text { past }\right)=P\left(t \leq T_{i}<t+d t \mid T_{i} \geq t\right)
$$

* $N_{i}(t)=I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right), \lambda_{i}(t)=\alpha_{i}(t) I\left(\widetilde{T}_{i} \geq t\right)$
* Aggregated counting process

$$
N(t)=\sum_{i=1}^{n} N_{i}(t)=\sum_{i=1}^{n} I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right)
$$

* Intensity process for $N(t)$

$$
\begin{aligned}
\lambda(t) d t & =P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]=\mathrm{E}\left[\sum_{i=1}^{n} d N_{i}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}(t) \mid \text { past }\right]=\sum_{i=1}^{n} P\left(d N_{i}(t)=1 \mid \text { past }\right)=\sum_{i=1}^{n} \lambda_{i}(t) d t
\end{aligned}
$$

Independent censoring - several survival times

* Survival times: T_{1}, \ldots, T_{n} (independent continuous stochastic variables)
\star Hazard rates: $\alpha_{\mathbf{1}}(t), \ldots, \alpha_{n}(t)$
* We observe (\widetilde{T}_{i}, D_{i}), where
- \widetilde{T}_{i} : right-censored survival time
- D_{i} : censoring indicator

$$
D_{i}= \begin{cases}1 & \text { if } \widetilde{T}_{i}=T_{i}, \\ 0 & \text { if } \widetilde{T}_{i}<T_{i}\end{cases}
$$

* Assume independent censoring, i.e.

$$
P\left(t \leq \widetilde{T}_{i}<t+d t \mid \widetilde{T}_{i} \geq t, \text { past }\right)=P\left(t \leq T_{i}<t+d t \mid T_{i} \geq t\right)
$$

* $N_{i}(t)=I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right), \lambda_{i}(t)=\alpha_{i}(t) I\left(\widetilde{T}_{i} \geq t\right)$
* Aggregated counting process

$$
N(t)=\sum_{i=1}^{n} N_{i}(t)=\sum_{i=1}^{n} I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right)
$$

* Intensity process for $N(t)$

$$
\begin{aligned}
\lambda(t) d t & =P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]=\mathrm{E}\left[\sum_{i=1}^{n} d N_{i}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}(t) \mid \text { past }\right]=\sum_{i=1}^{n} P\left(d N_{i}(t)=1 \mid \text { past }\right)=\sum_{i=1}^{n} \lambda_{i}(t) d t=\sum_{i=1}^{n} \alpha_{i}(t) l\left(\widetilde{T}_{i} \geq t\right) d t
\end{aligned}
$$

Independent censoring - several survival times

* Survival times: T_{1}, \ldots, T_{n} (independent continuous stochastic variables)
\star Hazard rates: $\alpha_{1}(t), \ldots, \alpha_{n}(t)$
* We observe (\widetilde{T}_{i}, D_{i}), where
- \widetilde{T}_{i} : right-censored survival time
- D_{i} : censoring indicator

$$
D_{i}= \begin{cases}1 & \text { if } \widetilde{T}_{i}=T_{i}, \\ 0 & \text { if } \widetilde{T}_{i}<T_{i}\end{cases}
$$

* Assume independent censoring, i.e.

$$
P\left(t \leq \widetilde{T}_{i}<t+d t \mid \widetilde{T}_{i} \geq t, \text { past }\right)=P\left(t \leq T_{i}<t+d t \mid T_{i} \geq t\right)
$$

* $N_{i}(t)=I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right), \lambda_{i}(t)=\alpha_{i}(t) I\left(\widetilde{T}_{i} \geq t\right)$
* Aggregated counting process

$$
N(t)=\sum_{i=1}^{n} N_{i}(t)=\sum_{i=1}^{n} I\left(\widetilde{T}_{i} \leq t, D_{i}=1\right)
$$

* Intensity process for $N(t)$

$$
\begin{aligned}
\lambda(t) d t & =P(d N(t)=1 \mid \text { past })=\mathrm{E}[d N(t) \mid \text { past }]=\mathrm{E}\left[\sum_{i=1}^{n} d N_{i}(t) \mid \text { past }\right] \\
& =\sum_{i=1}^{n} \mathrm{E}\left[d N_{i}(t) \mid \text { past }\right]=\sum_{i=1}^{n} P\left(d N_{i}(t)=1 \mid \text { past }\right)=\sum_{i=1}^{n} \lambda_{i}(t) d t=\sum_{i=1}^{n} \alpha_{i}(t) l\left(\widetilde{T}_{i} \geq t\right) d t
\end{aligned}
$$

* If $\alpha_{\mathbf{1}}(t)=\ldots=\alpha_{n}(t)=\alpha(t)$ we get

$$
\lambda(t)=\alpha(t) Y(t) \text { where } Y(t)=\sum_{i=1}^{n} I\left(\widetilde{T}_{i} \geq t\right): \text { \# individuals at risk just before time } t
$$

Summary

\star Have defined (informally)

- counting process
- intensity process of a counting process, $\lambda(t)$
- independent censoring
* Have found formulas for $\lambda(t)$ in the case of
- one uncensored survival time
- several uncensored survival times
- one censored survival time (assuming independent censoring)
- several censored survival times (assuming independent censoring)
* Multiplicative intensity process

$$
\lambda(t)=\alpha(t) Y(t)
$$

