Solution: Optional variation process of a transformed martingale
Eksempel
Here we solve problem 2.7 in ABG, using the definition of the optional variation process from section 2.1.2 and the definition of transformations from section 2.1.3.
Solution
We use a similar approach as the proof of \((2.14)\) in the book. From \((2.13)\) we have \((H\bullet M)_n = \sum_{i=1}^nH_i\Delta M_i\) and thus \(\Delta (H \bullet M)_i = H_i \Delta M_i\). From \((2.8)\) we have \([M]_n = \sum_{i=1}^n(\Delta M_i)^2\) and so \(\Delta [M]_i = (\Delta M_i)^2\).
Using \((2.8)\) for the process \((H\bullet M)\) we thus get \begin{align*}[H\bullet M]_n &= \sum_{i=1}^n(\Delta (H \bullet M)_i)^2 \\ &= \sum_{i=1}^n(H_i \Delta M_i)^2 \\ &= \sum_{i=1}^nH_i^2 (\Delta M_i)^2 \\ &= \sum_{i=1}^nH_i^2 \Delta [M]_i,\end{align*} which proves the statement.