Solution: Compensator of the Poisson process

Eksempel

Here we solve problem 2.9 in ABG, using the relevant definition and results from section 2.2 in the book.

Solution

Here we need to use that \(M^2(t) = N^2(t)−2\lambda t N(t)+(\lambda t)^2\) and the properties of the Poisson process \(N(t)\). Specifically we need to use that \begin{align*}E[N(t)| \mathcal{F}_s] &= E[N(t)-N(s) + N(s)| \mathcal{F}_s] \\ &= E[N(t)-N(s)| \mathcal{F}_s] + E[N(s)| \mathcal{F}_s] \\ &= E[N(t-s)] + N(s) \\ &= \lambda (t-s) + N(s) \\ &= (N(s) - \lambda s) + \lambda t,\end{align*} and that \begin{align*}E[N^2(t)| \mathcal{F}_s] &= Var[N(t)| \mathcal{F}_s] + E[N(t)| \mathcal{F}_s]^2,\end{align*} where \begin{align*} Var[N(t)| \mathcal{F}_s] &= Var[N(t)-N(s) + N(s)| \mathcal{F}_s] \\ &= Var[N(t)-N(s)| \mathcal{F}_s] + Var[N(s)| \mathcal{F}_s] \\ &= Var[N(t-s)] + 0 \\ &= \lambda (t-s).\end{align*} Now we can calculate \begin{align*} E[M^2 (t)−\lambda t |\mathcal{F}_s] &= E[N^2(t)−2\lambda t N(t)+(\lambda t)^2 -\lambda t|\mathcal{F}_s] \\ &= E[N^2(t)|\mathcal{F}_s] −2\lambda t E[N(t)|\mathcal{F}_s] +(\lambda t)^2 -\lambda t \\ &= Var[N(t)| \mathcal{F}_s] + E[N(t)| \mathcal{F}_s]^2−2\lambda t \left((N(s) - \lambda s) + \lambda t\right) +(\lambda t)^2 -\lambda t\\ &= \lambda (t-s) + ((N(s) - \lambda s) + \lambda t)^2 −2\lambda t (N(s) - \lambda s) - 2(\lambda t)^2 + (\lambda t)^2 -\lambda t\\ &= \lambda (t-s) + (N(s) - \lambda s)^2 + 2\lambda t (N(s) - \lambda s) + (\lambda t)^2 −2\lambda t (N(s) - \lambda s) - 2(\lambda t)^2 + (\lambda t)^2 -\lambda t \\ &= (N(s) - \lambda s)^2-\lambda s \\ &= M^2(s) - \lambda s.\end{align*} Thus we have shown that \(M^2 (t)−\lambda t\) is a martingale.