Solution: Covariate measured with error

Eksempel

Here we solve problem 4.9 in ABG, using properties of the additive model described in section 4.2, the relationship between hazard rate and survival function discussed in section 1.1.2, as well as properties of conditional normal distributions.

Solution

We consider the covariate \(X\), measured with some error, so that \(X = U + e\), where \(U \sim N(\mu,\sigma_u^2)\), \(e \sim N(0,\sigma_e^2)\). Thus \(X \sim N(\mu,\sigma_u^2+\sigma_e^2)\), and \(Cov(X,U) = Cov(U+e,U) = Cov(U,U) + Cov(e,U) = \sigma_u^2+0\).

We assume the additive model holds with respect to the true covariate \(U\), so that

\[\alpha(t|U=u) = \beta_0(t) + \beta_1(t)u.\]

We thus get survival function

\[S(t) = P(T > t | U = u) = \exp\left[-\int_0^t\alpha(s|U=u)ds\right] = \exp[-(B_0(t)+B_1(t)u)],\]

where \(B_i(t) = \int_0^t\beta_i(s)ds\).

Note that when conditioned on \(U=u\), \(T\) and \(X\) are independent, which means that \(P(T > t | U = u, X= x) = P(T > t | U = u) \).

We now want to express the distribution of \(T\) in terms of only \(X\). We thus get survival function

\begin{align*} S^*(t) &= P(T > t | X = x) \\ &= \int_{-\infty}^{\infty} f(T > t, u | X = x) du \\ &= \int_{-\infty}^{\infty} P(T > t | X = x, U = u) f_{U | X = x}(u) du \\ &= \int_{-\infty}^{\infty} P(T > t | U = u) f_{U | X = x}(u) du \\ &= \exp(-B_0(t))\int_{-\infty}^{\infty} \exp(-B_1(t)u) f_{U|X=x}(u) du .\end{align*}

We have that \(U | X = x\) is normally distributed with mean

\[\mu^*=\mu + Cov(X,U)Var(X)^{-1}(x-\mu) = \frac{\sigma^2_u}{\sigma^2_u+\sigma^2_e}x + \frac{\sigma^2_e}{\sigma^2_u+\sigma^2_e}\mu\]

and variance

\[\sigma^{2*} = Var(U)- Cov(X,U)Var(X)^{-1}Cov(U,X) = \frac{\sigma^2_u\sigma^2_e}{\sigma^2_u+\sigma^2_e}.\]

Now notice that

\[\int_{-\infty}^{\infty} \exp(-B_1(t)u) f_{U|X=x}(u) du = E_{U | X = x}[\exp(-B_1(t)U)]\]

is the moment generating function of \(U | X= x\), and thus equal to

\[\exp(-B_1(t)\mu^*+ \sigma^{2*} B_1(t)^2/2).\]

Inserting the expressions for \(\mu^*\) and \(\sigma^{2*}\), and inserting the resulting expression above yields

\begin{align*} S^*(t) &= \exp(-B_0(t)) \exp\left[-B_1(t)\left(\frac{\sigma^2_u}{\sigma^2_u+\sigma^2_e}x + \frac{\sigma^2_e}{\sigma^2_u+\sigma^2_e}\mu\right) + \frac{\sigma^2_u\sigma^2_e}{2(\sigma^2_u+\sigma^2_e)} B_1(t)^2\right] \\ &= \exp\left[-\left(B_0(t) + B_1(t)\frac{\sigma^2_e}{\sigma^2_u+\sigma^2_e}\mu - \frac{\sigma^2_u\sigma^2_e}{2(\sigma^2_u+\sigma^2_e)} B_1(t)^2\right)- \left(B_1(t)\frac{\sigma^2_u}{\sigma^2_u+\sigma^2_e}x\right) \right] ,\end{align*}

which means the model with respect to \(X\) is still additive. To find the coefficients we use that \(\beta_i(t) = \frac{d}{dt}B_i(t)\), so that

\begin{align*}\tilde{\beta_0} &= \frac{d}{dt}\left( B_0(t) + B_1(t)\frac{\sigma^2_e}{\sigma^2_u+\sigma^2_e}\mu - \frac{\sigma^2_u\sigma^2_e}{2(\sigma^2_u+\sigma^2_e)} B_1(t)^2\right) \\ &= \beta_0(t) + \beta_1(t)\frac{\sigma^2_e}{\sigma^2_u+\sigma^2_e}\mu - \frac{\sigma^2_u\sigma^2_e}{\sigma^2_u+\sigma^2_e} B_1(t)\beta_1(t)\end{align*}

and

\begin{align*}\tilde{\beta_1} &= \frac{d}{dt}B_1(t)\frac{\sigma^2_u}{\sigma^2_u+\sigma^2_e} \\ &= \beta_1(t)\frac{\sigma^2_u}{\sigma^2_u+\sigma^2_e},\end{align*}

for the model

\[\alpha^*(t|X=x) = \tilde{\beta_0}(t) + \tilde{\beta_1}(t)x.\]